СПИСОК ЛИТЕРАТУРЫ

- 1. Единые правила безопасности при разработке рудных, нерудных и россыпных месторождений подземным способом. М.: Недра, 1977. 233 с.
- 2. Влияние параметров аварийного торможения подъемной машины на динамику системы «сосуд армировка» // Горная электромеханика и автоматика: Межвед. науч.-техн. сб. 1999. Вып. 2 (61). С. 52-57.
- 3. Самуся В.И., Ильина И.С. Методика и проведение экспериментальных исследований взаимодействия шахтных подъемных сосудов в режиме торможения с проводниками жесткой армировки вертикальных стволов в промышленных условиях // Вісник НТУУ «КПІ»: Гірництво. №11. К., 2004. С. 57-64.

УДК 622.411.332.023.623: 622.831

Е.И. Кольчик, В.Н. Ревва

(Институт физики горных процессов НАН Украины), В.К. Костенко, А.Е. Кольчик (ДонНТУ)

СНИЖЕНИЕ ВРЕДНОГО ВЛИЯНИЯ ПОДЗЕМНОЙ РАЗРАБОТКИ УГОЛЬНЫХ МЕСТОРОЖДЕНИЙ НА ОКРУЖАЮЩУЮ СРЕДУ

Наведено аналіз впливу підземної розробки вугільних пластів на навколишнє середовище, результати математичного моделювання та лабораторних досліджень.

THE REDUCTION OF HARMFUL INFUENCE OF UNDERGROUND WORKING OF COAL DEPOSITS ON THE ENVIRONMENT

The analysis of influence of underground working of coal seams on the environment; the results of mathematical modeling and laboratory research have been given.

Основными факторами, определяющими степень геомеханических преобразований подрабатываемого горного массива и поверхности земли, являются: размеры выработанного пространства, глубина разработки пласта, его мощность и угол падения, прочность пород непосредственной и основной кровли, угол внутреннего трения пород и некоторые другие их механические характеристики [1-5].

По интенсивности проявления геомеханических преобразований горного массива и земной поверхности выделяют следующие типы [1, 2].

- перемещения с сохранением сплошности массива без образования зоны обрушения над пластом (очень легкий тип);
- перемещения с нарушением сплошности массива и образованием плавной мульды оседания на поверхности (легкий и средний тип преобразования);
- перемещения с образованием трещин разлома слоев и выходом их на земную поверхность при подработке пологими пластами (тяжелый тип преобразований);
- перемещения с образованием трещин расслоения и уступов на земной поверхности при подработке крутыми пластами (тяжелый тип преобразований);
- образование отдельных воронок и провалов на земной поверхности (очень тяжелый тип преобразования).

Наибольшие геомеханические преобразования происходят при 3-5 типах проявлений подработки горного массива и земной поверхности. При этом геомеханические преобразования приводят к нарушению структуры и порис-

тости, к изменению влажности и механических свойств.

В зоне сдвижений в активной стадии удельное сопротивление грунта уменьшается до 60 % (в среднем на 35 %). При этом уменьшается угол внутреннего трения и увеличивается пористость до 10 %. В затухающей стадии физико-механические свойства грунтов в некоторой степени восстанавливаются [3-5].

Существенные и необратимые изменения грунты претерпевают вследствие изменения гидрогеологического режима приповерхностных грунтовых вод при осадке земной поверхности. Образование мульды оседания может привести к заболачиванию или к подтоплению территории из-за повышения уровня грунтовых вод относительно опустившейся поверхности. Подъем уровня грунтовых вод шахтной поверхности, примерно, равен осадке подработанной территории. Переувлажнение грунтов приводит к резкому падению прочности оснований и может быть причиной разрушения оснований сооружений. Почвенный слой в зоне подтопления теряет первоначальные биологические свойства, снижается урожайность сельскохозяйственных угодий, гибнут в результате затопления корневой системы деревья.

Изменение рельефа местности в результате осадок территории может быть причиной эрозионных процессов, смыва плодородного слоя, появления оползней на склонах. В результате появления трещин и уступов на земной поверхности затрудняется сельскохозяйственная обработка земли. Возможно резкое изменение гидрогеологических условий, образование депрессионных воронок. В пределах мульд оседаний могут застаиваться дождевые воды, образовываться водоемы, болотистые участки.

Загрязнению подвергается грунтовый водоносный горизонт в зоне трещинообразования сточными и шахтными водами и особенно водами обогатительных фабрик, отводимыми по неэкранированным каналам.

Кроме этого с подземной разработкой угольных пластов неразрывно связано выделение метана, который при разгрузке угольных пластов переходит из сорбированного в свободное состояние и выделяется в горные выработки и на земную поверхность. Особо опасно выделение метана на поверхность на застроенных территориях, когда метан попадает в подвалы и полуподвальные помещения, где при наличии искры он может взорваться.

Поэтому вопрос планировки и отработки угольных пластов с целью снижения вредного влияния подземной добычи на газовыделение в пределах подработанной земной поверхности является важным и актуальным.

Процесс метановыделения на не подработанной земной поверхности практически отсутствует. Когда земная поверхность подрабатывается в горном массиве, появляются трещины, по которым газ из выработанного пространства поступает на поверхность.

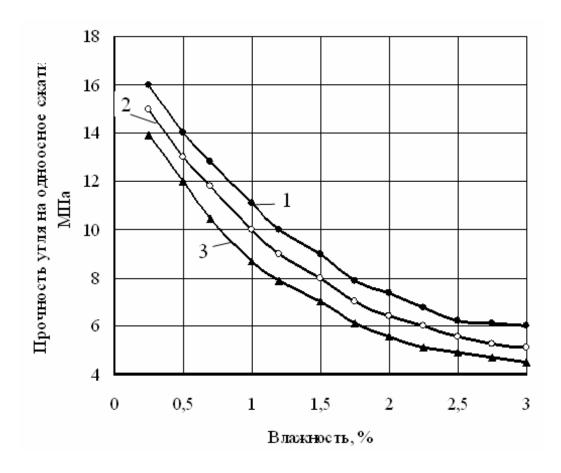
Максимальных значений метановыделение достигает в зоне активных сдвижений подработанного массива и при закрытии шахт, когда горные выработки и пустоты заполняются водой, что приводит к вытеснению газа на земную поверхность [6]. Так, в условиях шахты «Красноармейская-Западная

262 Выпуск № 64

№ 1» в скважины, пробуренные с поверхности и подрабатываемые очистными забоями (2-я южная лава блока № 8 и 4-я северная лава бремсберга блока № 5) в зоне активных сдвижений горного массива самопроизвольно выделялась от 3 до 6,5 м³/мин газовоздушной смеси. При этом процентное содержание метана составляло 88,4-93,1 %. В дальнейшем по мере затухания смещений и уплотнения горных пород количество выделяющегося метана снижалось до 0,3-0,5 м³/мин, а при разрушении и заиливании скважины вообще практически прекращалось.

В условиях закрытой шахты «Кочегарка» в 2005г. практически по всей площади целика, оставленного для охраны промплощадки и железной дороги, происходило выделение метана в количестве 0,3-0,5 м³/мин.

Из пробуренных с поверхности скважин самопроизвольно выделялось от 0,014 до 0,3 м³/мин СН₄. При этом процентное содержание метана в газовоздушной смеси колебалось от 18 до 44 %. Выделение метана на земную поверхность в зоне охранного целика начало происходить после повышения уровня воды с гор. 1190 м в старых выработках и пустотах шахты «Кочегарка». Уровень воды стабилизировался на гор. –814 м в связи с перепуском воды на шахты им. Ленина и им. Гаевого, однако, выделение газа на поверхность продолжается, но в меньшем количестве.

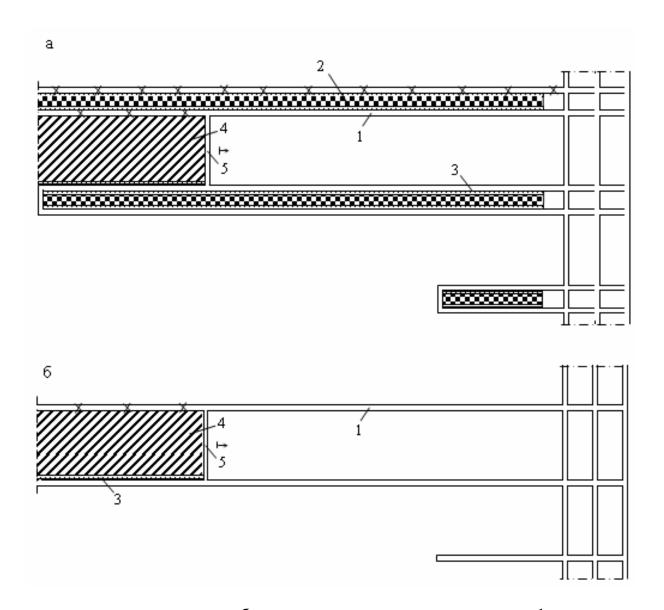

Выделение газа на земную поверхность может происходить и на территориях полностью затопленных шахт, поскольку на всех шахтах оставляется большое количество целиков.

В водной среде горный массив становится менее прочным, что приводит к его разрушению [7]. В связи с этим происходит разрушение угольного пласта в целиках и процесс метановыделения продолжается. Исследования, выполненные в ИФГП НАН Украины, показывают, что водонасыщение шахтной водой приводит к снижению прочности не только пород, но и угля. Так, с изменением влажности угля от 0,15 до 3,0 % предел прочности угля (марки Ж) на одноосное сжатие изменяется с 16 до 6 МПа (рис. 1), т.е. в 2,67 раза. Аналогичное уменьшение прочности наблюдается и в угольных образцах марок К и Т.

При трехосном равнокомпонентном сжатии ($\sigma_1 = \sigma_2 = \sigma_3$, где σ_1 ; σ_2 , σ_3 – напряжения по каждой оси сжатия, МПа) разрушение образца угля марки «Т» при влажности W = 0.8 % происходило при среднем напряжении $\sigma_{cp.} = 42$ МПа (табл. 1). При этом относительная деформация сжатия (уплотнения) составляла $\varepsilon_{cp} = 9*10^{-3}$.

Наименьшая прочность угольных образцов наблюдалась при влажности W=3,0~% и была в среднем равна $\sigma_{\rm cp.}=21~{\rm M\Pi a.}$ Однако относительная деформация уплотнения возросла до $\epsilon_{\rm cp}=30*10^{-3}$, т.е в 3,3 раза. Это свидетельствует о том, что наличие воды в угле приводит к снижению его прочности и сопротивления внутреннего скольжения частиц и микроблоков. Поэтому при подземной разработке угольных пластов необходимо вести планировку и их отработку таким образом, чтобы и после закрытия шахты влияние подработки было наименьшим. Снизить влияние разработки горного массива и земной поверхности можно посредством применения способа подготовки выемочных

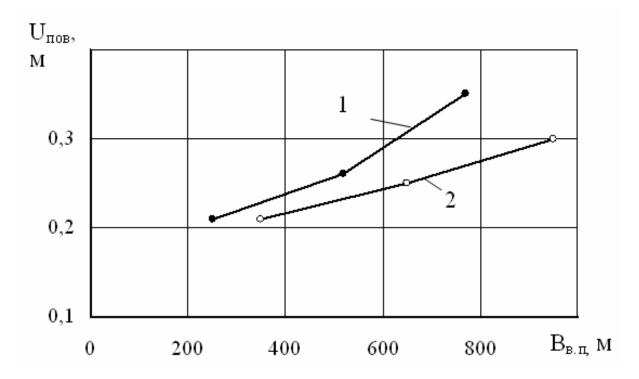
полей спаренными выработками и закладкой породы в выработанное пространство (рис. 2).



1 — марка угля «Ж»; 2 — марка угля «К»; 3 — марка угля «Т» Рис. 1 — Изменение прочности угля от его влажности.

Таблица 1 – Влияние влажности на деформации и напряжения в угольных образцах

	W = 3 %		W = 2,2 %		W = 0.8 %	
№ п/п		Относит.		Относит.		Относит.
	Напряжения,	деформации	Напряжения,	деформации	Напряжения,	деформации
11/11	$σ_{cp.}$, ΜΠ a	уплотнения,	$σ_{cp.}$, ΜΠ a	уплотнения,	$σ_{cp.}$, ΜΠ a	уплотнения,
		$\varepsilon_{\rm cp}*10^{-3}$		$\varepsilon_{\rm cp}*10^{-3}$		$\varepsilon_{\rm cp}*10^{-3}$
1	2	3	4	5	6	7
1	2	3	3	3	6	3
2	3	6	6	6	18	6
3	4	9	10	9	42	9
4	6	12	15	12		
5	8	15	22	15		
6	12	18	30	18		
7	14	21	36	21		
8	16	24				
9	18	27				
10	21	30				


264 Выпуск № 64

а – спаренными штреками; б – штреками, проводимыми узким ходом; 1 – штрек; 2 – бутовая полоса; 3 – литая полоса; 4 – выработанное пространство; 5 – лава. Рис. 2 – Схемы подготовки и отработки пласта.

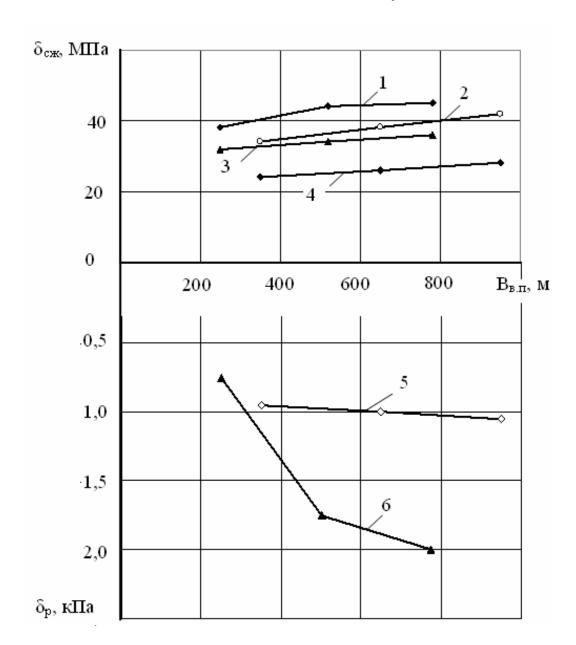
Сравнение и оценка способа подготовки и отработки угольных пластов с вариантом проведения выработок узким ходом производилась методом математического моделирования. Методом конечных элементов [8] были выполнены расчеты напряжений, деформаций и смещений для упругого горного массива. Глубина залегания пласта была равной 700 м, а его мощность — 1,5 м. Размер модели вкрест простирания пласта составлял 1700 м. Высота штрека равнялась 3,5 м, а ширина — 5,5 м. Литая полоса у штреков была шириной 1,2 м. Расчеты выполнялись для вариантов отработки одного, двух и трех ярусов. Длина лавы составляла 250 м, а расстояние между спаренными выработками — 40 м.

В результате выполненных расчетов установлено, что при подготовке выемочных полей спаренными штреками с заполнением выработанного пространства породой от проведения выработок, смещения земной поверхности на 10-30 % меньше, чем при проведении выработок узким ходом (рис. 3).

1 — при проведении штреков узким ходом; 2 — при проведении спаренных выработок. Рис. 3 — Изменение смещений поверхности от ширины выработанного пространства.

Величина вертикальных напряжений у выработки на контакте кровли с пластом со стороны массива и на расстоянии 2,5 м от пласта в породах почвы также уменьшилась соответственно на 18 и 33 % (рис. 4).

Растягивающие напряжения у земной поверхности при отработке трех смежных выемочных полей уменьшились почти в два раза.


Из изложенного следует, что отработка пласта с проведением выработок широким ходом и закладкой выработанного пространства оказывает значительно меньшее влияние на геомеханические преобразования подработанного горного массива и земной поверхности. В связи с тем, что величина действующих напряжений в подрабатываемом массиве меньше, то и его разрушение будет происходить в меньшей степени. После завершения работ и затопления шахты разрушение горного массива так же будет меньшим, поскольку в выработанном пространстве есть дополнительные опоры из бутовых полос. В связи с этим будет уменьшено и количество выделяющегося на поверхность метана.

СПИСОК ЛИТЕРАТУРЫ

- 1. Рекомендации по снижению отрицательного воздействия горных работ на геологическую среду основных угольных бассейнов. ИГД им. А.А. Скочинского. М.: 1987. 122 с.
 - 2. Будзило Е.А. Горные работы и охрана природной среды. Уголь Украины, 1980. № 5. С. 29 30.
- 3. Правила охраны сооружений и природных объектов от вредного влияния подземных горных разработок на угольных месторождениях. Недра. М.: 1981. 288 с.
- 4. Рекомендации по проектированию мероприятий для защиты эксплуатируемых зданий и сооружений от влияния горных выработок в основных угольных бассейнах. Стройиздат. Л.: 1967. 124 с.
- 5. Методические указания по предотвращению вредного влияния горных работ на геологическую среду. ИГД им. А.А Скочинского. М.: 1984. 143 с.
 - 6. Инструкция по защите зданий от проникновения метана. МакНИИ. Макеевка-Донбасс: 1986. 60с.

266 Выпуск № 64

- 7. Ревва В.Н., Недодаев Н.В., Ермаков В.Н., Улицкий О.А. Изменение физико-механических свойств угля и вмещающих пород при водонасыщении // Известия Донецкого горного института. -1999. -№ 1. C. 65 68.
 - 8. Фадеев А.Б. Метод конечных элементов в геомеханике. М.: Недра, 1987. 224 с.

1 – в породах кровли пласта при узком ходе; 2 – в породах кровли пласта при широком ходе; 3 – в породах почвы пласта при узком ходе;

4 – в породах почвы пласта при широком ходе;

5 – у земной поверхности при широком ходе; 6 – у земной поверхности при узком ходе. Рис. 4 – Изменение вертикальных напряжений от ширины выработанного пространства.