4. Косторнов А.Г. Материаловедение дисперсных и пористых металлов и сплавов: В 2 т. – К.: Наукова думка, 2003. – Т.2. - 550 с.

5. Сизоненко О.Н. Синергетический эффект в изменении фильтрационных характеристик пористых насыщенных жидкостью сред при электроразрядном воздействии // Геотехническая механика: Межвед. сб. науч. тр. Вып.42.- Днепропетровск: Ин-т геотехн. механики НАН Украины.- - 2003. - С.173-186.

6. Сизоненко О.Н., Ляпис Д.Н., Буряк В.Н., Банько В.Н. Изменение фильтрационных свойств насыщенной пористой среды при электровзрывном воздействии // Электронная обработка материалов. – 1992. - №2. – С. 33 – 36.

7. Николаевский В.Н. Механика пористых и трещиноватых сред. - М.: Недра, 1984. - 232 с.

8. Быков И.Г., Николаевский В.Н. Нелинейные волны в пористых насыщенных средах // Докл. РАН. – 1993. – 328, №1. – С. 35 – 38.

9. Сизоненко О.Н., Райченко А.И., Косенков В.М. Поведение примесей в слабопроводящей пористой среде с флюидами при импульсном давлении, возбуждаемом €лектрическим разрядом // Порошковая металлургия. – 2006. - №11/12. – С. 3 – 12.

10. Бармин А.А., Дарагаш Д. И. О фильтрации раствора в пористой среде с учетом адсорбции примеси на скелет // Известия вузов. Механика жидкости и газа.- 1994.- № 4.- С. 97-110.

11. Сизоненко О.Н., Тафтай Э.И., Хвощан О.В. Исследование влияния рабочей среды на амплитуду импульсов давления при высоковольтных импульсных разрядах// Электронная обработка материалов. – 2005. - №2. – С. 45 – 49.

УДК 622.411.332:533.17:622.357.1

Инж. Д.П. Гуня

(АП «Шахта им. А.Ф. Засядько») ПОКАЗАТЕЛИ ФИЛЬТРАЦИИ МЕТАНА В ПОДРАБОТАННОМ УГЛЕПОРОДНОМ МАССИВЕ НА ШАХТЕ ИМ. А.Ф. ЗАСЯДЬКО

Виконано аналіз фільтраційних показників підробленого вуглепородного масиву за результатами роботи поверхневих дегазаційних свердловин.

INDICES OF METHANE FILTRATION IN THE UNDERMINING ROCK MASSIF ON MINE NAMED BY A.F. ZASYADKO

The analysis of filtration parameters of a undermining rock massif by results of work degassing bore-holes, which were drilled from the surface is executed.

В работе [1], на базе экспериментальных исследований фильтрационных процессов, протекающих при частичной разгрузке массива в зоне влияния горных работ, рассмотрены коллекторские свойства и структура газоносных песчаников, а также определены значения их проницаемости.

Исследования, выполненные в условиях шахты им. А.Ф. Засядько, сводятся к определению интегрального коэффициента проницаемости, k_{np} и коэффициента фильтрации, k_{ϕ} подработанной толщи углепородного массива, а не отдельного песчаника. Процесс фильтрации метана из подработанного углепородного массива в скважину, пробуренную с поверхности с довольно корректным приближением можно описать уравнением Дарси

$$\overline{u} = -\frac{k_{\rm np}}{\mu} \operatorname{grad} P , \qquad (1)$$

где \overline{u} – вектор скорости фильтрации, м/с; k_{np} – коэффициент проницаемости, м²; μ – динамическая вязкость газа, для метана при условиях ниже критических ($P_{\kappa p} = 4,7$ МПа, $T_{\kappa p} = 190$ ⁰K), $\mu = 1,02 \cdot 10^{-5}$ H·c/м² (0,0102 сП); grad P – градиент давления газа по линии его фильтрации, $\frac{H}{M^2 \cdot M}$.

$$\operatorname{grad} P = \frac{P_{\Pi M} - P_{\mathrm{pab}}}{R_{\mathrm{sp}}},\tag{2}$$

где $P_{\text{п.м}}$ – давление в массиве, H/m^2 . Принимается равным установившемуся, начальному давлению на устье скважины, сложенным с давлением газового столба от устья до забоя скважины; $P_{\text{раб}}$ – рабочее давление на устье скважины, H/m^2 ; $P_{\text{раб}} = 1/3 \ P_{\text{п.м}}$, для работы скважины при рациональной депрессии на углепородный массив; $R_{3\phi}$ – средний радиус контура притока метана в скважину, м. $R_{3\phi}$ определяется по плотности извлекаемых запасов метана P_{3an} в районе исследуемого массива и объёму извлеченного метана из скважины.

Преобразуя уравнение Дарси для инженерных расчетов, получим формулу для определения интегрального (по всей толщине углепородного массива) коэффициента газопроницаемости

$$k_{\rm np} = \frac{0.3 \cdot Q \cdot \mu \cdot R_{\rm 3\phi}}{P_{\rm n.M} \cdot h \cdot \pi \cdot d_{\rm CKB}},\tag{3}$$

где Q – усредненный дебит скважины, м³/с; h – величина интервала перфорации скважины, м; d_{ckb} – диаметр скважины в интервале перфорации, м.

Коэффициент фильтрации определяется с учетом свойств газа по формуле:

$$k_{\phi} = k_{\rm mp} \cdot \frac{\rho}{\mu} , \qquad (4)$$

где ρ и μ – соответственно плотность и динамическая вязкость метана.

Для анализа взяты семь поверхностных дегазационных скважин, пробуренных в породы кровли пласта m_3 на уклонном поле шахты имени А.Ф. Засядько. Скважины бурились до начала ведения очистных работ на глубину 1100-1173 м, не достигая пласта m_3 на 14–48 м. Стволы скважин были закреплены обсадными трубами диаметром 114–127 мм с цементацией затрубного пространства. Призабойный интервал длиной 180–290 м обсаживался перфорированными трубами и служил газоприемной частью скважин. До начала очистных работ в районе расположения скважин газовыделение из них было практически нулевое – отмечались следы метана с концентрацией 5–10 % на устье скважин. После пересечения забоем лавы проекции забоя скважины на пласт и разуплотнения углепородного массива в районе газоприемной части скважины начиналось интенсивное газовыделение с дебитом до 5–20 м³/мин 100 % метана. Затем, по мере отхода лавы, дебит снижался на уровне 1,0–2,0 м³/мин. После этого скважины подсоединяли к сети газозаправочной станции.

Параметры фильтрации метана в дегазационные скважины приведены в табл. 1. Здесь надо отметить, что начальное давление на устье скважин замерено перед их включением в сеть, объем добычи, средний дебит метана и период работы скважин приведены по данным наблюдений на шахте. Плотность извлекаемых запасов метана P_{3an} в районе скважин определялась по методике, изложенной в [2], а средний радиус газопритока $R_{3\phi}$ вычислялся, исходя из допущения, что площадь дренирования метана в скважину имеет форму круга.

Большие различия в продолжительности работы скважин объясняются преждевременным выходом их из строя. Основными причинами прекращения работы скважин являются: перекрытие ствола скважины горными породами при формировании мульды сдвижения выше выработанного пространства; заштыбовка скважин в начальный период работы с дебитом (5–20 м³/мин); заполнение скважин водой до уровня, при котором гидростатический напор воды превышает давление газа.

Как показывают результаты анализа (табл. 1) параметры фильтрации метана из подработанного углепородного массива в поверхностные дегазационные скважины колебались в следующих пределах: плотность ресурсов метана изменялась от 113 до 293 м³/м² площади; плотность извлекаемых запасов $P_{3an} = 45,1-122,8 \text{ м}^3/\text{m}^2$; прогнозный коэффициент извлечения метана – $K_{прог} = 0,23-0,57$; количество извлеченного метана из скважины составляло 0,89-4,0 млн. м³; средний дебит из скважины – $Q = 0,02-0,17 \text{ m}^3/\text{c}$; средний радиус газопритока в скважину $R_{эф} = 82-161 \text{ m}$; интегральный коэффициент извлечения метана поверхностной дегазационной скважиной $K_{извл} = 0,12-0,43$.

Учитывая, что скважины МТ-264 и МТ-284 были оснащены оборудованием для откачки воды и то, что из них было извлечено соответственно 3,87 и 4,0 млн. м³ метана, можно сделать вывод о том, что они прекратили работу в напорном режиме в результате газоистощения окружающего углепородного массива. Поэтому параметры фильтрации метана из подработанного углепородного массива в эти скважины можно принять за определяющие, на которые необходимо ориентироваться при разработке проектов дегазации и добычи шахтного метана в аналогичных горногеологических условиях. То есть, при среднем дебите скважины $Q = 0,04-0,17 \text{ м}^3/\text{с}$, радиус газопритока в скважину должен быть $R_{эф} = 130-160 \text{ м}$, интегральный коэффициент проницаемости углепородного массива $k_{пр} = 3,0-4,0 \text{ мД}$, а коэффициент извлечения метана $K_{извл} = 38-43 \%$.

Таким образом, анализ параметров фильтрации метана из подработанного углепородного массива в поверхностные дегазационные скважины в горногеологических условиях шахты имени А.Ф. Засядько показал, что в данных условиях (H = 1000-1200 м, $P_{3an} = 45-123$ м³/м²) необходимо ориентироваться на следующие усредненные параметры фильтрации метана в скважину: при дебите скважины Q = 0,1 м³/с, радиус газопритока должен быть $R_{3\phi} = 145$ м;

			М	MM	а		M ²	Подработано углей		Подработано песчаников			ия,	н. М ³		Μ	lae-	
№ Скважины	Γ лубина скважины L , м	Расстояние от забоя скважины до пласта <i>т</i> ₃ , м	Величина интервала перфорации <i>h</i> ,	Диаметр перфорирован. интервала, 1	Начальное давление на устье, МП	Период работы, сут.	Плотность ресурсов метана $P_{ m p},{ m m}^3/{ m s}$	Общая мощность <i>∑т</i> , м	Плотность извлекаемых запасов ме- тана в углях, $P_{\rm y},{\rm m}^3/{\rm m}^2$	Общая мощность <i>Дт</i> , м	Шлотность извлекаемых запасов ме- тана в песчаниках, $P_{\rm n}, {\rm m}^3/{\rm M}^2$	Плотность извлекаемых запасов $P_{\mathrm{san}},\mathrm{m}^3/\mathrm{m}^2$	Прогнозный коэффициент извлечен $K_{ m npor}$	Количество извлеченного метана, мли	Средний дебит Q , м $^3/{ m c}$	Средний радиус газопритока $R_{ m s\phi}$, ^в	Интегральный коэффиц. газопрониц мости $k_{ m np},$ мД	Коэффициент извлечения, К
MT-229	1101	25	244	73	3,6	791	242	2,50	32,4	68,0	64,7	97,1	0,40	1,25	0,02	91	1,5	0,20
MT-241	1100	48	270	73	3,5	583	197	2,11	28,4	12,0	16,7	45,2	0,23	1,57	0,03	142	3,6	0,13
MT-249	1104	25	284	73	3,6	329	265	1,32	16,7	57,5	62,2	78,9	0,26	0,89	0,03	94	2,2	0,12
MT-264	1040	26	220	93	3,4	263	113	1,45	18,6	37,0	45,2	63,8	0,57	3,87	0,17	161	4,3	0,43
MT-284	1110	14	180	93	3,0	1240	188	1,72	23,3	64,0	70,6	93,8	0,5	4,00	0,04	134	3,1	0,38
MT-286	1156	14	252	93	3,8	400	241	3,00	35,1	66,9	87,7	122,9	0,51	1,30	0,04	82	2,1	0,25
MT-287	1155	20	290	93	3,8	300	293	3,00	36,3	34,6	42,0	78,3	0,27	1,00	0,04	97	2,5	0,12

Таблица 1 – параметры фильтрации метана из подработанного массива и поверхностные дегазационные скважины

интегральный коэффициент проницаемости углепородного массива $k_{np} = 3,5$ мД, а коэффициент извлечения метана $K_{извл} = 40$ %.

СПИСОК ЛИТЕРАТУРЫ

1. Шевелев Г.А. Динамика выбросов угля, породы и газа. – К. Наук думка, 1989. – 160 с.

2. В.В. Лукинов. Методика расчета извлекаемых запасов метана из подработанного и надработанного углепородного массива / В.В. Лукинов, А.П. Клец, В.Г. Ильюшенко, В.В. Бобрышев, Б.В. Бокий, Д.П. Гуня, В.В. Фичев // Геотехническая механика. – Днепропетровск, 2002. – Вып. 37. – С. 62–69.

УДК 532.516

Кандидаты техн. наук В. И. Елисеев, В. И. Луценко (ИГТМ НАН Украины) ДИНАМИКА ПАРОВЫХ ПУЗЫРЕЙ И КРИСТАЛЛОВ В ДВУХКОМ-ПОНЕНТНОМ РАСТВОРЕ

Сформульована математична модель руху двокомпонентного і трьохфазного перегрітого середовища. На прикладі розчину цукрози у воді отримані залежності росту парових бульбашок і зміни радіусів кристалликів цукру по мірі руху розчину.

DYNAMICS OF BUBBLES OF VAPOUR AND CRYSTALS IN TWO-COMPONENTS SOLUTION

Mathematical model of movement of superheated environment two-components and threephase are formulated. Dependences of growth of steam bubbles and changes of radiuses of crystals of sugar in process of movement of a solution are received by the example of a solution of sucrose in water.

Введение. В настоящее время вопросы тепломассообмена в многокомпонентных и многофазных системах приобретают большую актуальность в связи с развитием новых и усовершенствованием старых технологических процессов приготовления тех или иных продуктов пищевой, химико-технологической или металлургической продукции. В данной работе на основе общих законов теплои массообмена в многофазных системах рассмотрим некоторые основные закономерности динамики и роста паровых пузырьков и кристаллов в двухкомпонентном растворе сахарозы.

Постановка задачи и основные уравнения. Будем считать, что среда состоит из двух химически нейтральных компонентов: воды и сахарозы (раствор сахарозы) и трех фаз: жидкой (раствор), твердой (кристаллики сахара) и газообразной (пузырьки пара воды). Используя методологию работы [1], выпишем основные уравнения движения, теплообмена и массообмена, принимая во внимание, что между жидкой фазой и твердой, а также жидкой и газообразной фазами существует обмен массовыми и тепловыми потоками

$$\frac{\partial(n_c u_c)}{\partial x} + \frac{\partial(r n_c v_c)}{r \partial r} = 0 \quad , \tag{1}$$