Biliaiev M.M., Biliaieva V.V., Berlov O.V., Zhovtonoha M.M., Verhun O.O. The study of the influence of protective screen on reducing the level of air pollution
- Details
- Parent Category: Geo-Technical Mechanics, 2022
- Category: Geo-Technical Mechanics, 2022, Issue 163
Geoteh. meh. 2022, 163, 61-72
https://doi.org/10.15407/geotm2022.163.061
THE STUDY OF THE INFLUENCE OF PROTECTIVE SCREEN ON REDUCING THE LEVEL OF AIR POLLUTION
1Biliaiev M.M., 2Biliaieva V.V., 3Berlov O.V., 1Zhovtonoha M.M., 3Verhun O.O.
1Ukrainian State University of Science and Technologies, 2Oles Honchar Dnipro National University, 3Pridniprovsk State Academy of Civil Engineering and Architecture
UDC 504.5:629.33
Language: English
Abstract. The task of assessing the areas of chemical pollution near the highway, where the protective screen is located, is considered. The protective screen locally changes the aerodynamics of the air flow near the highway, which contributes to the minimization of air pollution in the working zones near the highway. Recently, interest has increased in studying the effectiveness of the use of protective screens of complex shape, which are located near highways. The purpose of the work is to develop a numerical model for calculating pollution zones formed near the protective screen, as well as conducting a laboratory experiment to analyze the patterns of formation of pollution zones near the T-shaped screen. For mathematical modeling of the process of formation of pollution zones near the protective screen, the equation of convective-diffusion transfer of impurities is used. This equation takes into account atmospheric diffusion, wind speed, emission intensity of a chemically hazardous substance, the location of the emission source, and the shape of the protective screen. Two models of aerodynamics are used to calculate the air flow velocity field when flowing around a protective screen. The first model is the Navier-Stokes equations. These equations are written in the variables "eddy current function". The second model is a two-dimensional equation for the velocity potential. For the numerical integration of the vortex transport equation, the splitting method is used, followed by the explicit finite-difference method. For the numerical integration of the Poisson equation for the stream function, the Liebman method is used. To numerically integrate the equation for the velocity potential and the equation for the convective-diffusion transfer of impurities, a locally one-dimensional difference scheme is used. The calculation of unknown parameters is implemented by an explicit formula. A package of application programs was created on the basis of the developed numerical model. The constructed numerical model and software package allow to study the process of the formation of pollution areas near the highway almost in real time. The results of the computational experiment are presented. The results of a laboratory experiment on the study of the structure of the contamination zone near the protective screen are presented.
Keywords: atmospheric air pollution, protective screen, numerical simulation, laboratory experiment, emission from motor vehicles, working area.
REFERENCES
1. Chernychenko, I.O., Persheguba, Ya.V., Lytvynenko, O.M. and Shvager, O.V. (2010), “Peculiarities of carcinogenic risk formation for the population living in the area affected by the highway”, Collection of scientific works, vol. 56, pp. 159–167.
2. Zgurovskiy, M.Z., Skopetskiy, V.V., Khrushch, V.K. and Belyayev, N.N. (1997), Chislennoyemodelirovaniyerasprostraneniyazagryazneniyavokruzhayushcheysrede [Numerical modelling of pollution in the environment], Naukova Dumka, Kyiv, Ukraine.
3. Marchuk, G.I. (1982), Matematicheskoye modelirovaniye v probleme okruzhayushchey sredy [Mathematical modeling in the problem of the environment], Nauka, Moscow, USSR.
4. Samarskiy, A.A. (1983), Teoriya raznostnykh skhem [The theory of difference schemes], Nauka Publ., Moscow, USSR.
5. Biliaiev, M., Pshinko, O., Rusakova, T., Biliaieva, V. and Sladkowski, A. (2021), “Computer Model for Simulation of Pollutant Dispersion Near the Road with Solid Barriers”, Transport Problems, vol. 16, no. 2, part 1., pp. 73–86. https://doi.org/10.21307/tp-2021-024
6. Brolin, N. (2010), “Development of Curved Noise and NOx Barrier”, Digitala Vetenskapliga Arkivet, available at: http://www.diva-portal.org/smash/get/diva2:444437/FULLTEXT01.pdf.
7. Brantley, H., Hagler, G., Deshmukh, P. and Baldauf, R. (2014), "Field Assessment of the effects of Roadside Vegetation on Near Road Black Carbon and Particulate Matter", Science of The Total Environment, pp. 468-469, https://doi.org/10.1016/j.scitotenv.2013.08.001
8. Hagler, G. (2011), "Model evaluation of roadside barrier impact on near-road air pollution", Atmospheric Environment, vol. 45, no. 15, pp. 2522-2530, https://doi.org/10.1016/j.atmosenv.2011.02.030
9. Heist, D. (2013), "Estimating near-road pollutant dispersion: A model inter-comparison", Transportation Research Part D: Transport and Environment, vol. 25, pp. 93-105, https://doi.org/10.1016/j.trd.2013.09.003
10. Jeong, S. J. (2013), "Effect of Double Noise-Barrier on Air Pollution Dispersion around Road, Using CFD", Asian Journal of Atmospheric Environment, vol. 8, no. 2, pp. 81-88, https://doi.org/10.5572/ajae.2014.8.2.081
11. Jeong, S. (2015), "A CFD Study of Roadside Barrier Impact on the Dispersion of Road Air Pollution", Asian Journal of Atmospheric Environment, vol. 9, no. 1, pp., available at: 22-30. https://doi.org/10.5572/ajae.2015.9.1.022
12. Wonsik, C., Shishan H., Meilu H. and Kozawa, K. (2018), "Spatial Heterogeneity of Roadway Pollutant in Los Angeles", available at: http://www.aqmd.gov/docs/default-source/technologyresearch/TechnologyForums/near-road-mitigationmeasures/near _road_mitigation-agenda-presentations.pdf
About authors:
Biliaiev Mykola Mykolaiovych, Doctor of Technical Sciences (D.Sc.), Professor in Department of Hydraulics and Water Supply, Ukrainian State University of Science and Technologies, Dnipro, Ukraine, This email address is being protected from spambots. You need JavaScript enabled to view it.
Biliaieva Viktoriia Vitaliivna, Candidate of Technical Sciences (Ph.D), Associate Professor in Department of Fluid Dynamics, Energy and Mass Transfer, Oles Gonchar Dnipro National University, Dnipro, Ukraine
Berlov Oleksandr Viktorovych, Candidate of Technical Sciences (Ph.D), Associate Professor in Department of Workplace Safety and Health, Pridniprovsk State Academy of Civil Engineering and Architecture, Dnipro, Ukraine, This email address is being protected from spambots. You need JavaScript enabled to view it.
Zhovtonoha Mykola Mykolaiovych, Candidate of Economic Sciences (Ph.D), Associate Professor in Department of Hydraulics and Water Supply, Ukrainian State University of Science and Technologies, Dnipro, Ukraine, This email address is being protected from spambots. You need JavaScript enabled to view it.
Verhun Oksana Oleksandrivna, Candidate of Technical Sciences (Ph.D), Associate Professor in Department of Ecology and Environmental Protection, Pridniprovsk State Academy of Civil Engineering and Architecture, Dnipro, Ukraine, This email address is being protected from spambots. You need JavaScript enabled to view it.