Mykola Nechytailo, Olena Nahorna, Olena Nesterova. The grounds for the modification of membranes with the help of quantum mechanical calculation method

Geoteh. meh. 2020, 154, 179-188

https://doi.org/10.1051/e3sconf/202016800032

 

THE GROUNDS FOR THE MODIFICATION OF MEMBRANES WITH THE HELP OF QUANTUM MECHANICAL CALCULATION METHOD

1Mykola Nechytailo, 1Olena Nahorna, 1Olena Nesterova

1Prydniprovsk State Academy of Civil Engineering and Architecture

Language: English

Abstract. In the process of water purification to increase the reflective capacity of ultrafiltration membranes, their surface modification is applied with aluminium oxychloride and polyhexamethylene guanidine hydrochloride are used. This enables to extract organic contaminations at 90% level, not less their salt balance. To estimate the reaction capacity, the method of calculation of energetic parameters and structural characteristics with the help of chemical analysis quanta is applied. For the analysis, the semiempirical method of modified neglect of diatomic overlapping is used. The prospective estimation of gel layer formation on the membrane surface is made. The method of molecular mechanics is applied in quantum-chemical calculations for each substance and the material of the membrane. While analyzing the interaction between the material of the membrane and membrane-forming supplement, the charges on molecules` atoms, the determination of energetic levels of the lower vacant and upper filled molecular orbitals and energetic gap are estimated. It was proved that aluminium oxychloride precipitates on the membrane surface due to Van der Waltz forces, and the inoculation of polyhexamethylene guanidine occurs at fiber functionalization through the formation of hydrogen type of bond between the groups С≡N polymer and =N-H group. Scientific substantiation of membrane modification was obtained.

REFERENCES

1. Slastunov, S.V, Koroleva, V.N., Kolikov, K.S. (2001). Gornoe delo i okruzhayuschaya sreda. Moskva: Logos

2. Pevzner, M.E., Malyishev, L.A., Melkov, A.D., Ushan, V.P. (2001).Gornoe delo i ohrana okruzhayuschey sredyi. Moskva: Izdatelstvo Moskovskogo gosudarstvennogo gornogo universiteta

3. Dorozhko, S., Malkevich, N., Morzak, G. (2012). Tehnicheskie osnovyi ohranyi okruzhayuschey sredyi. Minsk: BNTU

4. Nechitaylo, N., Nagornaya, E., Nesterova, E. (2016).Exploring the properties of ultrafiltration membranes with a dynamic layer and bactericidal inoculation for the purification of natural waters. Vostochno-Evropeyskiy zhurnal peredovykh tekhnologiy [Eastern-European Journal of Enterprise Technologies], 6/5 (84), 46-53. https://doi.org/10.15587/1729-4061.2016.86187

5. Nechytailo, N., Nahorna, О., Kosiuk, Y. Defining the effect of the chemical concentration and solution pH on membrane chemical cleaning process. E3S Web of Conferences: International Conference Essays of Mining Science and Practice, 109 (2019). https://doi.org/10.1051/e3sconf/201910900061

6. Yu, X., Yi, B., Xie, Z., Wang, X., Liu, F. Prediction of the conformational property for polymers using quantum chemical descriptors. Chemometrics and Intelligent Laboratory Systems, 87(2), 247–251,(2007). https://doi.org/10.1016/j.chemolab.2007.03.001

7. Liu, W., Yi, P., Tang, Z. QSPR Models for Various Properties of Polymethacrylates Based on Quantum Chemical Descriptors. QSAR & Combinatorial Science, 25(10), 936–943, (2006). https://doi.org/10.1002/qsar.200510177

8. Bureau, C., Chong, D., Lécayon, G., Delhalle, J. Accurate density functional calculation of core electron binding energies. Journal of Electron Spectroscopy and Related Phenomena, 83(2-3), 227–234, (1997). https://doi.org/10.1016/S0368-2048(96)03096-4

9. Naves de Brito, A., Svensson, S., Ågren, H., Delhalle, J. Experimental and theoretical study of the XPS core levels of gas phase acetonitrile, acrylonitrile and propionitrile. Model molecules for polyacrylonitrile. Journal of Electron Spectroscopy and Related Phenomena, 63(3), 239–251, (1993). https://doi.org/10.1016/0368-2048(93)87006-L

10. Yu, X., Yi, B., Wang, X. Prediction of refractive index of vinyl polymers by using density functional theory. Journal of Computational Chemistry,28(14), 2336–2341, (2007). https://doi.org/10.1002/jcc.20752

11. Xu, J., Chen, B., Zhang, Q., Guo, B. Prediction of refractive indices of linear polymers by a four-descriptor QSPR model. Polymer, 45(26), 8651–8659, (2004). https://doi.org/10.1016/j.polymer.2004.10.057

12. Yang, C., Wang, B., Zhang, Y., Wang, H. Preparation and properties of polyacrylonitrile fibers with guanidine groups. Fibers and Polymers, 16(8), 1611–1617, (2015). https://doi.org/10.1007/s12221-015-4480-1

13. Mei, Y., Yao, C., Fan, K., Li, X. Surface modification of polyacrylonitrile nanofibrous membranes with superior antibacterial and easy-cleaning properties through hydrophilic flexible spacers. Journal of Membrane Science, 417-418, 20–27, (2012). https://doi.org/10.1016/j.memsci.2012.06.021

14. Salaneck, W. R., Wu, C. R., Brédas, J. L., Ritsko, J. J. Electronic structure of polyacrylonitrile. Chemical Physics Letters, 127(1), 88–92, (1986). https://doi.org/10.1016/S0009-2614(86)80214-7

Attachments:
FileDescriptionFile size
Download this file (сборник_154-172-178.pdf)Mykola Nechytailo, Olena Nahorna, Olena Nesterova. The grounds for the 664 kB