Mykhailo Kirsanov, Inna Diakun, Vitalii Ruban, Viktor Skosyriev, Oleksandr Zhevzhyk. Estimation of usage efficiency of freon-steam turbines in mine energy complexes
- Details
- Parent Category: Geo-Technical Mechanics, 2020
- Category: Geo-Technical Mechanics, 2020, Issue 154
Geoteh. meh. 2020, 154, 74-83
https://doi.org/10.1051/e3sconf/202016800048
ESTIMATION OF USAGE EFFICIENCY OF FREON-STEAM TURBINES IN MINE ENERGY COMPLEXES
1Mykhailo Kirsanov, 1Inna Diakun, 1Vitalii Ruban, 2Viktor Skosyriev, 3Oleksandr Zhevzhyk
1Institute of Geotechnical Mechanics named by N. Poljakov of National Academy of Sciences of Ukraine, 2Pryazovskyi State Technical University, 3Dnipro National University of Railway Transport named after Academician V. Lazaryan
Language: English
Abstract. Increase of operating efficiency of mine energy complexes is an actual scientific and technical problem. Systems that utilize energy of low-potential sources and have freon-steam turbines are suggested to be included in mine energy complexes. Principles of selection of freons as working fluids in energy systems are suggested in the paper. Usage of some thermal equations of state for defining thermal and physical properties of freons is analyzed. Equation of isentropic process for the thermal Redlich–Kwong equation of state is obtained. Calculation of energy efficiency of a system with a freon-steam turbine for selected variants of usage of working fluids is performed. A calculation method of thermodynamic parameters that are necessary for energy conversion efficiency estimation of specific freons in a system of useful utilization of energy is developed. Analysis of results indicates that usage of ozone-safe and fire-safe freons in energy utilization systems of low-potential sources with a possibility of utilization of additional waste heat, which was not used in the past, allows increasing the operating efficiency of mine energy complexes.
REFERENCES:
1. Bulat, A.F., Chemeris, I.F. (2006). Nauchno-tekhnicheskie osnovy sozdaniia shakhtnykh kogeneratsionnykh energeticheskikh kompleksov. Kyiv: Naukova dumka
2. Gichev, Yu.P. (2012). Vtorichnye energoresursy promyshlennykh predpriiatiy. Dnepropetrovsk: NMetAU
3. Morozov, Yu.P. (2017). Dobycha geotermalnykh resursov i akkumulirovaniye teploty v podzemnykh
gorizontakh. Kyiv: Naukova Dumka
4. Shurchkova, Yu.A. (2018). World trends in the development of geothermal energy. Part 1 Geothermal resources by region of the world. Problemy obshchey energetiki, 4, 17–24. https://doi.org/10.15407/pge2018.04.017
5. Zysin, V.A. (1962). Kombinirovannye parogazovye ustanovki i tsikly. Moskva - Leningrad: Gosenergoizdat
6. Tsvetkov, O.B., Laptev, Yu.A. (2002). Thermophysical aspects of environmental problems of modern refrigeration equipment. Khimiia i kompyuternoe modelirovanie. Butlerovskie soobshcheniia, 10, 54–57
7. Yanchoshek, L., Kunts, P. (2012). Organic Rankine Cycle: Use in Cogeneration. Turbiny i dizeli, 2, 50–53
8. Andryushchenko, A.I. (1985). Osnovy termodinamiki tsiklov teploenergeticheskikh ustanovok. Moskva: Vysshaya shkola
9. Mayyer, Dzh., Geppert-Mayyer, M. (1980). Statisticheskaya mekhanika. Moskva: Mir
10. Bogolyubov, N.N. (1970). Izbrannyye trudy. Kyiv: Naukova Dumka
11. Landau, L.D., Lifshits, Ye.M. (1976). Statisticheskaia fizika. Moskva: Nauka
12. Rid, R., Prausnnits, Dzh., Shervud, T. (1982). Svoystva gazov i zhidkostey. Leningrad: Khimiya
13. Ravdel, A.A., Ponomarov, A.M. (1983). Kratkiy spravochnik fiziko-khimicheskikh velichin. Leningrad: Khimiya
14. Korn, G., Korn, T. (1970). Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov. Moskva: Nauka
15. Bogdanov, S.N., Burtsev, S.I., Ivanov, O.P., Kupriyanova, A.V. (1999). Kholodilnaia tekhnika i konditsionirovaniye vozdukha. Svoystva veshchestv. SPb.: SPbGAKHPT
16. Komarov, S.G. Gruzdev, V.A., Stankus, S.V. (2008). Sound speed and ideal gas heat capacity of R-236еa Freon. Teplofizika i aeromekhanika, 15, 3, 395–397. https://doi.org/10.1134/S0869864308030025