Mosaad Ali, Shulin Sun, Wei Qian, Abdou Dodo Bohari, Dusabemariya Claire, Yan Zhang. Geoelectrical tomography data processing and interpretation for pb-zn-ag mineral exploration in Nash creek, Canada

Geoteh. meh. 2020, 154, 3-18

https://doi.org/10.1051/e3sconf/202016800003

 

GEOELECTRICAL TOMOGRAPHY DATA PROCESSING AND INTERPRETATION FOR PB-ZN-AG MINERAL EXPLORATION IN NASH CREEK, CANADA

1,2Mosaad Ali, 1Shulin Sun, 1Wei Qian, 1Abdou Dodo Bohari, 1Dusabemariya Claire, 1Yan Zhang

1School of Earth Science and Engineering at Hohai University, 2Mining and Metallurgical Engineering Department at Assiut University

Language: English

Abstract. The geoelectrical tomography survey was carried out to explore and characterize a (Zn-Pb-Ag) sulphide deposit in Nash Creek (NC), New Brunswick province, Canada. The exploration strategy has been conducted by the 2-D survey for a well-cut grid consisting of twelve surface lines (profiles) each around 2 km long, and 300 m apart, for the total area around 9.5 km2. The datasets (resistivity and induced polarization) were acquired using the Iris El-Rec Pro system with pole-dipole electrodes array spaced 50 m apart, and ten levels of data datum. The results of the 2-D inversion revealed that the underground resistivity and chargeability values in the exploration area have a range of (5 to 1300 Ωm) and (0-9.5 mV/V), respectively. The sulphide mineralization zones in the exploration area are characterized by moderate resistivity values (150-300 Ωm) and moderate to low chargeability values (>5.5 mV/V), with a depth of around (90-140 m) from the surface. The 3-D visualization model clearly reveals that three main zones of sulphide mineralization are present in the exploration area. The predicted geological reserve of the sulphide ore in the exploration area was calculated. The inverted models revealed a good agreement with the existing geological features in the exploration area.

REFERENCES

1. J. Martinez, J. Rey, S. Sandoval, Hidalgo, R. Mendoza, Geophysical Prospecting Using ERT and IP Techniques to Locate Galena Veins. Remote Sens. 11, 2923 (2019). https://doi.org/10.3390/rs11242923

2. S. Uhlemann, J. Chambers, W. Falck, A. Tirado Alonso, J. Fernández González, A. de Gea, Applying electrical resistivity tomography in ornamental stone mining: challenges and solutions. Minerals. 8, 491 (2018). https://doi.org/10.3390/min8110491

3. S. A. Sultan, S. A. Mansour, F. M. Santos, A. S. Helaly, Geophysical exploration for gold and associated minerals, case study: Wadi El Beida area, South Eastern Desert, Egypt. J. Geophys. Eng. 6, 345-356 (2009). https://doi.org/10.1088/1742-132/6/4/002

4. A. R. Heritiana, R. Riva, R. Ralay, R. Boni, Evaluation of flake graphite ore using self-potential (SP), electrical resistivity tomography (ERT) and induced polarization (IP) methods in east coast of Madagascar. J. Appl. Geophys. (2019). https://doi.org/10.1016/j.jappgeo.2019.07.001

5. C. A. Moreira, E. G. Dos Santos, L. M. Ilha, R. Paes, Recognition of Sulfides Zones in Marble Mine Through Comparative Analysis of Electrical Tomography Arrangements. Pure Appl. Geophys. 176, 4907-4920 (2019). https://doi.org/10.1007/s00024-019-02243-y

6. M. Ali, S. Sun, W. Qian, A. D. Bohari, D. Claire, Y. Zhang, Application of Resistivity Method for Mining Tailings Site Selection in Karst Regions. E3S Web Conf. 144, 1002 (2020). https://doi.org/10.1051/e3sconf/202014401002

7. J. M. Reynolds, An introduction to applied and environmental geophysics, John Wiley & Sons, (2011)

8. G. Zhang, Q.-T. Lü, P.-R. Lin, G.-B. Zhang, Electrode array and data density effects in 3D induced polarization tomography and applications for mineral exploration. Arab. J. Geosci. 12, 221 (2019). https://doi.org/10.1007/s12517-019-4341-0

9. S. R. Mashhadi, H. Ramazi, The application of resistivity and induced polarization methods in identification of skarn alteration haloes: A case study in the Qale-Alimoradkhan Area. J. Environ. Eng. Geophys. 23, 363-368 (2018)

10. M. A. Hussein, S. S. Imbaby, A. R. Ibrahim, Panel Width Affected by Rock Mass Classifications (Abu-Tartur Phosphate Mines). Accept. under Publ. JES. 41 (2013)

11. W. H. Pelton, S. H. Ward, P. G. Hallof, W. R. Sill, P. H. Nelson, Mineral discrimination and removal of inductive coupling with multifrequency IP. Geophysics. 43, 588-609 (1978). https://doi.org/10.1190/1.1440839

12. P. H. Nelson, G. D. Van Voorhis, Estimation of sulfide content from induced polarization data. Geophysics. 48, 62-75 (1983). https://doi.org/10.1190/1.1441408

13. G. Gurin, K. Titov, Y. Ilyin, Induced Polarization of Rocks Containing Metallic Particles: Evidence of Passivation Effect. Geophys. Res. Lett. 46, 670-677 (2019). https://doi.org/10.1029/2018GL080107

14. C. L. Bérubé, G. R. Olivo, M. Chouteau, S. Perrouty, Mineralogical and textural controls on spectral induced polarization signatures of the Canadian Malartic gold deposit: Applications to mineral exploration. Geophysics. 84, B135--B151 (2019). https://doi.org/10.1190/geo2018-0404.1

15. D. J. Vaughan, Sulfide mineralogy and geochemistry: introduction and overview. Rev. Mineral. Geochemistry. 61, 1-5 (2006). https://doi.org/10.2138/rmg.2006.61.1

16. C. Moreno, R. Sáez, F. González, G. Almodóvar, M. Toscano, G. Playford, A. Alansari, S. Rziki, A. Bajddi, Age and depositional environment of the Draa Sfar massive sulfide deposit, Morocco. Miner. Depos. 43, 891 (2008). https://doi.org/10.1007/s00126-008-0199-x

17. J. A. Walker, Stratigraphy and lithogeochemistry of Early Devonian volcano-sedimentary rocks hosting the Nash Creek Zn-Pb-Ag Deposit, northern New Brunswick (pp. 52-97). Geol. Investig. New Brunswick 2009. Ed. by G.L. Martin. New Brunswick Dep. Nat. Resour. Lands, Miner. Pet. Div. Miner. Resour. Rep., 52-97 (2010)

18. M. A. Hussein, A. R. Ibrahim, S. S. Imbaby, Load calculations and selection of the powered supports based on rock mass classification and other formulae for Abu-Tartur longwall phosphate mining conditions. J. Eng. Sci. 41, 1728-1742 (2013)

19. T. Dahlin, 2D resistivity surveying for environmental and engineering applications. First Break. 14, 275-283 (1996). https://doi.org/10.3997/1365-2397.1996014

20. M. H. Loke, J. E. Chambers, D. F. Rucker, O. Kuras, P. B. Wilkinson, Recent developments in the direct-current geoelectrical imaging method. J. Appl. Geophys. 95, 135-156 (2013). https://doi.org/10.1016/j.jappgeo.2013.02.017

21. D. F. Brown, Technical report on mineral resource estimate. Nash Creek Proj. Restigouche County, New Brunswick, Canada, 1-190 (2007)

22. B. Milkereit, W. Qian, H. Ugalde, E. Bongajum, M. Gräber, Geophysical Imaging of a" Blind. Zn-Pb-Ag Depos. EAGE Expand. Abstr. Rome, 9-12 (2008). https://doi.org/10.3997/2214-4609.20147628

23. E. Bongajum, B. Milkereit, J. Huang, Building 3D stochastic exploration models from borehole geophysical and petrophysical data: A case study. Can. J. Explor. Geophys. 38, 40-50 (2013)

24. M. A. Hussein, A. R. Ibrahim, S. S. Imbaby, Application of the Rock Mass Classification Systems to Pillar Design in Longwall Mining for Abu-Tartur Longwall Phosphate Mining Conditions. J. Eng. Sci. 41, (2013)

25. A. D. Bohari, M. Harouna, A. Mosaad, Geochemistry of Sandstone Type Uranium Deposit in Tarat Formation from Tim-Mersoi Basin in Northern Niger (West Africa): Implication on Provenance, Paleo-Redox and Tectonic Setting. J. Geosci. Environ. Prot. 6, 185 (2018). https://doi.org/10.4236/gep.2018.68014

26. I. R. Annesley, C. Cutforth, D. Billard, R. T. Kusmirski, K. Wasyliuk, T. Bogdan, K. Sweet, C. Ludwig, D. R. Lentz, K. G. Thorne, others, in International Applied Geochemistry Symposium, 40, 421(2009)

27. P. James, F. Barr, "Technical Report and Updated Mineral Resource Estimate on the Nash Creek Project, New Brunswick, Canada" (2018)

28. M. H. Loke, R. D. Barker, Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys. Prospect. 44, 131-152 (1996). https://doi.org/10.1111/j.1365-2478.1996.tb00142.x

29. H. O. Seigel, Mathematical formulation and type curves for induced polarization. Geophysics. 24, 547-565 (1959). https://doi.org/10.1190/1.1438625

30. D. W. Oldenburg, Y. Li, Estimating depth of investigation in dc resistivity and IP surveys. Geophysics. 64, 403-416 (1999). https://doi.org/10.1190/1.1444545

31. S. Tavakoli, T. E. Bauer, T. M. Rasmussen, P. Weihed, S.-Å. Elming, Deep massive sulphide exploration using 2D and 3D geoelectrical and induced polarization data in Skellefte mining district, northern Sweden. Geophys. Prospect. 64, 1602-1619 (2016). https://doi.org/10.1111/1365-2478.12363

32. T. Dahlin, B. Zhou, A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophys. Prospect. 52, 379-398 (2004). https://doi.org/10.1111/j.1365-2478.2004.00423.x

33. R. D. Ogilvy, Down-hole IP surveys applied to off-hole mineral exploration-some design considerations. Geoexploration. 22, 59-73 (1984). https://doi.org/10.1016/0016-7142(84)90006-1

34. J. Bernard, O. Leite, F. Vermeersch, I. Instruments, F. Orleans, Multi-electrode resistivity imaging for environmental and mining applications. IRIS Instruments, Orleans (2006)

35. M. H. Loke, Tutorial : 2-D and 3-D electrical imaging surveys. Geotomo Software, Malaysia, 127 (2014)

36. E. H. Eloranta, A Comparison between Mise-à-la-Masse anomalies obtained by pole-pole and pole-dipole electrode configurations. Geoexploration. 23, 471-481 (1985). https://doi.org/10.1016/0016-7142(85)90074-2

37. S. Chandra, V. A. Rao, V. S. Singh, A combined approach of Schlumberger and axial pole--dipole configurations for groundwater exploration in hard-rock areas. Curr. Sci., 1437-1443 (2004)

38. J. E. Nyquist, M. J. S. Roth, Improved 3D pole-dipole resistivity surveys using radial measurement pairs. Geophys. Res. Lett. 32 (2005). https://doi.org/10.1029/2005GL024153

39. A. A. Hassan, E. H. Kadhim, M. T. Ahmed, Performance of Various Electrical Resistivity Configurations for Detecting Buried Tunnels Using 2D Electrical Resistivity Tomography Modelling. DIYALA J. Eng. Sci. 11, 14-21 (2018). https://doi.org/10.24237/djes.2018.11303

40. N. Usman, K. Abdullah, M. Nawawi, Investigating the performance of combined resistivity model using different electrode arrays configuration. Arab. J. Geosci. 12, 125 (2019). https://doi.org/10.1007/s12517-018-4192-0

41. C. A. Moreira, S. M. Lopes, C. Schweig, A. da Rosa Seixas, Geoelectrical prospection of disseminated sulfide mineral occurrences in Camaquã sedimentary basin, Rio Grande do Sul state, Brazil. Brazilian J. Geophys. 30 (2012). https://doi.org/10.22564/rbgf.v30i2.90

42. G. Gurin, K. Titov, Y. Ilyin, A. Tarasov, Induced polarization of disseminated electronically conductive minerals: a semi-empirical model. Geophys. J. Int. 200, 1555-1565 (2015). https://doi.org/10.1093/gji/ggu490

43. G. Gurin, A. Tarasov, Y. Ilyin, K. Titov, Time domain spectral induced polarization of disseminated electronic conductors: Laboratory data analysis through the Debye decomposition approach. J. Appl. Geophys. 98, 44-53 (2013). https://doi.org/10.1016/j.jappgeo.2013.07.008

44. A. Revil, N. Florsch, D. Mao, Induced polarization response of porous media with metallic particles -Part 1: A theory for disseminated semiconductors. Geophysics. 80, D525-D538 (2015). https://doi.org/10.1190/geo2014-0577.1