Georgii Karman, Yurii Oksen, Olena Trofymova, Yurii Komissarov, Borys Dizhevskyi, Maksym Radiuk, Inna Diakun. Conversion of gas engine waste heat into cold using absorption chillers
- Details
- Parent Category: Geo-Technical Mechanics, 2020
- Category: Geo-Technical Mechanics, 2020, Issue 153
Geoteh. meh. 2020, 153, 151-161
https://doi.org/10.1051/e3sconf/202016800046
CONVERSION OF GAS ENGINE WASTE HEAT INTO COLD USING ABSORPTION CHILLERS
1Georgii Karman, 2Yurii Oksen, 2Olena Trofymova, 2Yurii Komissarov, 2Borys Dizhevskyi,2Maksym Radiuk, 3Inna Diakun
1General Electric, 2National Technical University "Dnipro Polytechnic", 3Institute of Geotechnical Mechanics named by N. Poljakov of National Academy of Sciences of Ukraine
Language: English
Abstracts. A possibility of gas engine waste heat conversion into cold for air conditioning in mines using lithium bromide absorption chillers is investigated. Dependencies of parameters of a thermodynamic cycle and energy indicators of chillers on temperatures of a heating medium and a coolant are obtained using mathematical modelling. It is shown that it is rational to use two chillers with sequential movement of a heating medium and a coolant through them in opposite directions for a full conversion of gas engine waste heat. COP of such a system is 0.733. This allows obtaining 2140 kW of cooling capacity with a coolant temperature of 7°C when using a gas engine JMS-620 by Jenbacher.
REFERENCES:
1. Fedorov, S.D., Oblakevich, S.V., Radiuk, O.P. (2006). The problem of utilization coal mine methane in cogeneration plants and ways to solve it on the example of the mine name by A.F. Zasiadko. Promelectro, 5, 35‑39
2. Semenenko, Ye.V., Diakun, I.L., Ruban, V.D. (2013). Prospects for the creation and implementation of energy complexes at coal mining enterprises. ugol ukrainy, 7, 30-34
3. Semenenko Ye.V., Diakun I.L. (2014) Economic prospects for coal methane utilization. In: Prospects for the use of alternative and renewable energy sources in Ukraine, 2, 304-310
4. Voloshyn, O., Potapchuk, I., Yemelianenko, V., Zhovtonoha, M., Pertsevyi, V. (2019). Experimental study for the process of the borehole thermal reaming by means of the angular plasmatron. In: E3S Web of Conferences, International Conference Essays of Mining Science and Practice, 109 https://doi.org/10.1051/e3sconf/201910900113
5. Voloshyn, O.I., Potapchuk, I.Y., Zhevzhyk, O.V. (2018). Influence of the heat-transfer stream pressure on the surface of the rock in a process of the thermal reaming of the borehole. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 53-59 https://doi.org/10.29202/nvngu/2018-2/6
6. Kyrychenko, Y., Samusia, V., Kyrychenko, V., Romanyukov, A. (2013). Experimental investigation of aero-hydroelastic instability parameters of the deep-water hydrohoist pipeline. Middle-East Journal of Scientific Research, 18 (4), 530-534
7. Kyrychenko, E., Samusya, V., Kyrychenko, V., Antonenko, A. (2015). Thermodynamics of multiphase flows in relation to the calculation of deep-water hydraulic hoisting In: New Developments in Mining Engineering: Theoretical and Practical Solutions of Mineral Resources Mining, 305-311 https://doi.org/10.1201/b19901-54
8. Ilin, S.R., Samusya, V.I., Kolosov, D.L., Ilina, I.S., Ilina, S.S. (2018). Risk-forming dynamic processes in units of mine hoists of vertical shafts. Naukovyi Visnyk Natsіonalnoho Hіrnychoho Unіversitetu, (5), 64–71 https://doi.org/10.29202/nvngu/2018-5/10
9. Pivnyak, G., Samusia, V., Oksen, Y., Radiuk, M. (2014). Parameters optimization of heat pump units in mining enterprises. In: Progressive technologies of coal, coalbed methane and ores mining, 19-24 https://doi.org/10.1201/b17547-5
10. Oksen, Y., Samusia, O. (2014). Economic efficiency of heat pump technology for geothermal heat recovery from mine water. In: Progressive technologies of coal, coalbed methane, and ores mining, 191-194 https://doi.org/10.1201/b17547-35
11. Pivnyak, G., Samusia, V., Oksen, Y., Radiuk, M. (2015). Efficiency increase of heat pump technology for waste heat recovery in coal mines. In: New Developments in Mining Engineering: Theoretical and Practical Solutions of Mineral Resources Mining, 1-4 https://doi.org/10.1201/b19901-2
12. Oksen, Y., Radiuk, M., Komissarov, Y., Kirsanov, M. (2019). Energy efficiency of cogeneration utilization of residual heat of flue gases during the drying of coal concentrate in pipe-dryers.In: E3S Web of Conferences, International Conference Essays of Mining Science and Practice, 109 https://doi.org/10.1051/e3sconf/201910900065
13. Oksen, Yu.I., and Radiuk, M.V. (2009). Investigation effectiveness of the use of waste heat gas piston installations for electricity generation, Geotekhnicheskaya Mekhanika [Geo-technical Mechanics], 81, 200-207
14. Oksen, Yu.I., Trofymova, Е.P, Pisarev, V.P. (2019). Study of the efficiency of conversion of waste heat of gas reciprocating plants to electrical energy. Hirnycha elektromekhanika ta avtomatyka, 101, 104-109
15. Oksen, Yu.I., Trofymova, O., Bobryshov, O., Lukisha, A., Pryvalov, V. (2019). Gas engines waste heat recovery to electrical energy. In: E3S Web of Conferences, International Conference Essays of Mining Science and Practice, 109 https://doi.org/10.1051/e3sconf/201910900066
16. Barteczko, B., Nawrat, S., Rzepski, H., Schöler, J. (2001). Wytwarzanie w skojarzeniu prądu elektrycznego, ciepła i chłodu na potrzeby podziemnej klimatyzacji KWK "Pniówek". Ciepłownictwo, Ogrzewnictwo, Wentylacja, 32 (10), 22-27
17. Forrest S. Yount (2017) Fundamentals Volume Subcommittee (ASHRAE HANDBOOK COMMITTEE)
18. Baranenko, A.V., Tymofeevskyi, L.S., Dolotov, A.H., Popov, A.V. (2005). Absorbtsionnyye preobrazovateli teploty. Sankt-Peterburg: SPbGUNiPT
19. Galymova, L.V. (1997). Absorbtsionnyye kholodilnyye mashiny i teplovyye nasosy. Astrakhan: AGTU
20. Byikov, A.V. (1982). Kholodilnyye mashiny: Spravochnik. Moskva: Legkaya i pischevaya promyshlennost
21. Tseytlin, Yu.A., Abramova, T.G., Mogilevskiy, V.I., Roytman, V.F., Chernichenko, V.K. (1983). Proyektirovaniye i ekspluatatsiya shakhtnykh sistem konditsionirovaniya vozdukha. Moskva: Nedra
22. Tseitlin, Yu.A., Oksen, Yu.I., Roitman, V.F., Mogilevsky, V.I. (1985) Optimization of design of large refrigeration systems for deep mines. Transactions of the Institution of Mining and Metallurgy (Section A: Mining industry), 94, 217-218
23. Oksen, Yu.I., Semeshko, E.G. (1994) The effect of stochasticity of thermophysical properties and rock temperature on the distribution of cooling power of mine air coolers. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh, 1, 87-91 https://doi.org/10.1007/BF02048779