Liliia Frolova, Mykola Kharytonov, Iryna Klimkina, Oleksandr Kovrov, Andrii Koveria. Adsorption purification of waste water from chromium by ferrite manganese

Geoteh. meh. 2020, 153, 125-132

https://doi.org/10.1051/e3sconf/202016800026

 

ADSORPTION PURIFICATION OF WASTE WATER FROM CHROMIUM BY FERRITE MANGANESE

1Liliia Frolova, 2Mykola Kharytonov, 3Iryna Klimkina, 3Oleksandr Kovrov, 3Andrii Koveria

1Ukrainian State University of Chemical Technology, 2Dnipro State Agrarian And Economic University, 3National Technical University "Dnipro Polytechnic" of the Ministry of Education and Science of Ukraine

Language: English

Abstract. Plasma method is used to synthesize manganese ferrite. The basic properties of ferrite are determined by IR spectroscopy, UV spectroscopy, X-ray phase analysis, vibration magnetometry. The paper shows that the use of magnetically controlled sorbent allows to purify waste waters from chromium (III). The process of adsorption of chromium cations (III) is investigated. The kinetics of the process is studied. To describe the equilibrium isotherms, the experimental data are analysed by the models of Langmuir, Freundlich isotherms. Pseudo-first order, pseudo-second-order, and Weber-Morris are used to elucidate the kinetic parameters and mechanism of the adsorption process. It has been established that the removal of Cr (III) cations is described by the pseudo-second order of the Langmuir reaction and mechanism.


REFERENCES:

1. Pavlichenko, A.V., Kulina, S.L. (2015). Ekologіchna nebezpeka gіrnichih vіdhodіv lіkvіdovanih shaht Chervonograds'kogo gіrnichopromislovogo regіonu. Zbіrnik naukovih prac' NGU, (48), 216-223

2. X. He, P. Li J. Expo. Sci. Environ. Epidemiol, 1-17 (2020)

3. J.R.Werber, C. O.Osuji, M. Elimelech Nat. Rev. Mater., 1, 5 (2016) https://doi.org/10.1038/natrevmats.2016.18

4. A. Pratush, A.Kumar, Z. Hu Int Microbiol, 21, 3 (2018) https://doi.org/10.1007/s10123-018-0012-3

5. D. Khawaji, I.K. Kutubkhanah, J. M. Wie, Desalination, 221, 1-3 (2008) https://doi.org/10.1016/j.desal.2007.01.067

6. N.M. Rakhi, S. Dayanand Arch Pet Environ Biotechnol, 105 (2017)

7. M. Hua, S. Zhang, B. Pan, W. Zhang, L.Lv, Q. Zhang, J. Hazard. Mater., 211, (2012) https://doi.org/10.1016/j.jhazmat.2011.10.016

8. E. Bazrafshan, L. Mohammadi, A. Ansari-Moghaddam, A.H. Mahvi J Environ Health Sci 13, 1 (2015) https://doi.org/10.1186/s40201-015-0233-8

9. A. Azimi, A. Azari, M. Rezakazemi, M. Ansarpour ChemBioEng Reviews, 4, 1 (2017) https://doi.org/10.1002/cben.201600010

10. L. Frolova, M. Kharytonov Adv Mater Sci Eng (2019)

11. M.V.S. Kumar, G.J. Shankarmurthy, E. Melagiriyappa, K.K. Nagaraja, H.S. Jayanna, M.P. Telenkov J. Mater. Sci. Mater. Electron. 29, 15 (2018)

12. M. Coll, J.M. Montero Moreno, J. Gazquez, K. Nielsch, X. Obradors, T. Puig Adv. Funct. Mater., 24(34), 5368-5374 (2014) https://doi.org/10.1002/adfm.201400517

13. L. Frolova, A. Pivovarov Chem.Chem.Technol., 10, 2 (2016)

14. L.A. Frolova, A.A. Pivovarov, T.E. Butyrina, E.G. Tsepich J Water Chem Techno, 37, 4 (2015) https://doi.org/10.3103/S1063455X15040062

15. L. A.Frolova, A.A. Pivovarov, L.B. Anisimova, Z.N. Yakubovskaya, A.I. Yakubovskii Voprosy Khimii i Khimicheskoi Tekhnologii, 6, (2017)

16. A. Subramani, J. G. Jacangelo Water Res, 75, (2015) https://doi.org/10.1016/j.watres.2015.02.032

17. D. Mehta, S. Mazumdar, S. K. Singh J Water Process Eng, 7,  (2015) https://doi.org/10.1016/j.jwpe.2015.07.001

18. L. A. Frolova, M. P. Derhachov Nanoscale Res. Lett.,  12, 1 (2017) https://doi.org/10.1186/s11671-017-2268-5

19. A. E. Regazzoni Colloids Surf. A Physicochem. Eng. Asp, 585, (2020)