Oleksandr Balalaiev. The role of microbiota in paleoecosystems for forming the molecular profile of coals

Geoteh. meh. 2020, 153, 48-58

https://doi.org/10.1051/e3sconf/202016800041

 

THE ROLE OF MICROBIOTA IN PALEOECOSYSTEMS FOR FORMING THE MOLECULAR PROFILE OF COALS

1Oleksandr  Balalaiev

1Institute of Geotechnical Mechanics named by N. Poljakov of National Academy of Sciences of Ukraine

Language: English

Abstract. Mass deposits of fossil coals can be formed in certain evolution periods of the Earth's biosphere, and they are the result of biogeocenosis functioning. A unique combination of ecological factors leads to the emergence of specific biomes with short trophic chains, an imbalance in the carbon cycle and desynchronization in the flows of substance and energy. The molecular structure of coal is a complex conglomerate of various stable organic compounds of primary and secondary metabolites of biogeocenosis reducers. The molecular profile includes numerous classes of low- and high-molecular organic substances that interact closely with each other. Multiple classes are not endless, the interaction is not chaotic, and their number and relationships are determined by paleoecologic patterns and coalification. Even a small fragment of the profile includes valuable information about the genesis of individual compounds and the biogeochemical situation when forming the coal bed. Microbiota impact does not end with a period of mortmass accumulation, which is never fully mineralized. In the coalification process, favorable environmental conditions may arise for the rebirth of the microorganisms’ lives in coal beds.


REFERENCES:

1. Van Krevelen, D.W. (1993). Coal: Typology-Physics-Chemistry-Constitution. Amsterdam: Elsevier Science

2. Mathews, J.P., Chaffee, A.L. (2012). The molecular representations of coal - A review. Fuel, 96 (1), 1-14 https://doi.org/10.1016/j.fuel.2011.11.025

3. Ke-Chang, Xie. (2015). Structure and reactivity of coal: A survey of selected Chinese coals. Springer-Verlag. Berlin, Heidelberg

4. Sharma, A., Kyotani, T., Tomita, A. (1999). A new quantitative approach for microstructural analysis of coal char using HRTEM images. Fuel, 78 (10), 1203-1212 https://doi.org/10.1016/S0016-2361(99)00046-0

5. Suping, Yao, Kun, Jiao, Ke, Zhang, WenXuan, Hu, Hai, Ding, MiaoChun, Li, WenMing, Pei. (2011). An atomic force microscopy study of coal nanopore structure. Chinese Science Bulletin, 56 (25), 2706-2712  https://doi.org/10.1007/s11434-011-4623-8

6. Sukachev, V.N., Lavrenko, Y.M. (1972). Izbrannye trudy v trekh tomakh. Tom 1: Osnovy lesnoy tipologii i biogeotsenologii. Leningrad: Nauka

7. Scott, A.C., Glasspool, I.J. (2006). The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proceedings of the National Academy of Sciences of the United States of America, 103 (29), 10861-10865 https://doi.org/10.1073/pnas.0604090103

8. Grossart, H.-P., Keilor, R.J. (2016). Aquatic fungi: Targeting the forgotten in microbial ecology. Current Opinion in Microbiology, 31, 140-145 https://doi.org/10.1016/j.mib.2016.03.016

9. Zavarzin, G.A., Kolotilova, N.N. (2003). Lektsiipoprirodovedcheskoymikrobiologii. Moscow: Nauka

10. Gromov, B.V., Pavlenko, G. V. (1989). Ekologiyabakterii. Leningrad: Izdatelsvo LGU

11. Barton, L.L., Fauque, G.D. (2009). Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. Advances in Applied Microbiology, 68, 41–98 https://doi.org/10.1016/S0065-2164(09)01202-7

12. Schobben, M., Stebbins, A., Ghaderi, A,, Strauss, H., Korn, D., Korte, C. (2015). Eutrophication, microbial-sulfate reduction and mass extinctions. Commun Integr Biol., 9 (1): e1115162 https://doi.org/10.1080/19420889.2015.1115162

13. Popa, R., Kinkle, B.K., Badescu, A. (2004). Pyrite Framboids as Biomarkers for Iron-Sulfur Systems. Geomicrobiology, 21 (3), 193-206 https://doi.org/10.1080/01490450490275497

14. Hay, M.B., Myneni, S.C.B. (2007). Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: Infrared spectroscopy. Geochimica et Cosmochimica Acta, 71 (14), 3518-3532; https://doi.org/10.1016/j.gca.2007.03.038

15. Thornton, D.C.O. (2014). Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. European Journal of Phycology, 49 (1), 20-46 https://doi.org/10.1080/09670262.2013.875596

16. Dobrovolskaya, T.G. (2002). Struktura bakterialnykh soobshchestv pochv. Moscow: IKTs Akademkniga

17. Meslé, M.; Dromart, G.; Oger, P. (2013) Microbial methanogenesis in subsurface oil and coal. Res. Microbiol., 164, 959–972 https://doi.org/10.1016/j.resmic.2013.07.004

18. Strapoc, D., Mastalerz, M., Dawson, K., Macalady, J., Callaghan, A.V., Wawrik, B., Turich, C., Ashby, M. (2011). Biogeochemistry of microbial coal-bed methane. Annual Review of Earth and Planetary Sciences, 39, 617–656 https://doi.org/10.1146/annurev-earth-040610-133343

19. Beckmann, S., Luk, A.W.S., Gutierrez-Zamora, M.-L., Chong, N.H.H., Thomas, T., Lee, M., Manefield, M. (2019). Long-term succession in a coal seam microbiome during in situ biostimulation of coalbed-methane generation. The ISME Journal, 13, 632–650 https://doi.org/10.1038/s41396-018-0296-5

20. L. Pymonenko, O. Burchak, O. Balalaiev, V. Slobodiannykova, Yu. Sierikov. Change of parameters in molecular structure of Donbas coals under the influence of external factors. E3S Web of Conferences, International Conference Essays of Mining Science and Practice, 109 (2019) https://doi.org/10.1051/e3sconf/201910900077