Mosaad Ali, Shulin Sun, Wei Qian, Abdou Dodo Bohari, Dusabemariya Claire, Ajibola Richard Faruwa, Yan Zhang. Borehole resistivity and induced polarization tomography at the canadian shield for mineral exploration in north-western sudbury
- Details
- Parent Category: Geo-Technical Mechanics, 2020
- Category: Geo-Technical Mechanics, 2020, № 153
Geoteh. meh. 2020, 153, 25-38
https://doi.org/10.1051/e3sconf/202016800002
BOREHOLE RESISTIVITY AND INDUCED POLARIZATION TOMOGRAPHY AT THE CANADIAN SHIELD FOR MINERAL EXPLORATION IN NORTH-WESTERN SUDBURY
1,2Mosaad Ali , 1Shulin Sun, 1Wei Qian, 1Abdou Dodo Bohari, 1Dusabemariya Claire, 1Ajibola Richard Faruwa, 1Yan Zhang
1Earth Science and Engineering at Hohai University, 2Mining and Metallurgy Engineering at Assiut University
Language: English
Abstract. Mineral exploration in the Canadian shield is a major challenge nowadays. This is because of the thick overburden cover and complex geology. Borehole tomography using resistivity and induced polarization (BHDCIP) method has a big advantage here due to that the data is acquired underneath the cover and data quality, in general, is superior to that acquired at the surface. BHDCIP provides good resistivity and chargeability data, which can identify mineralization easily. In this study, the BHDCIP survey with high-resolution data was carried out to identify mineralization zones in the McCreedy West zone, north-western Sudbury, Ontario, Canada. Two and three-dimensional (2-D and 3-D) inversion results of three boreholes clearly revealed the mineralization zones and that harmonised with previous geological studies in the study area. The BHDCIP method provided insight and developed an informative subsurface map to identify the mineralization zones, thus proving it as a beneficial tool used for mineral exploration in complex geology with a minimal data survey and an irregular geometrical distribution.
REFERENCES:
1. J. M. Reynolds, An introduction to applied and environmental geophysics (John Wiley & Sons, 2011)
2. G. Zhang, Q.-T. Lü, P.-R. Lin, G.-B. Zhang, Electrode array and data density effects in 3D induced polarization tomography and applications for mineral exploration. Arab. J. Geosci. 12, 221 (2019). https://doi.org/10.1007/s12517-019-4341-0
3. W. H. Pelton, S. H. Ward, P. G. Hallof, W. R. Sill, P. H. Nelson, Mineral discrimination and removal of inductive coupling with multifrequency IP. Geophysics. 43, 588-609 (1978) https://doi.org/10.1190/1.1440839
4. P. H. Nelson, G. D. Van Voorhis, Estimation of sulfide content from induced polarization data. Geophysics. 48, 62-75 (1983) https://doi.org/10.1190/1.1441408
5. G. Gurin, K. Titov, Y. Ilyin, Induced Polarization of Rocks Containing Metallic Particles: Evidence of Passivation Effect. Geophys. Res. Lett. 46, 670-677 (2019) https://doi.org/10.1029/2018GL080107
6. C. L. Bérubé, G. R. Olivo, M. Chouteau, S. Perrouty, Mineralogical and textural controls on spectral induced polarization signatures of the Canadian Malartic gold deposit: Applications to mineral exploration. Geophysics. 84, B135-B151 (2019) https://doi.org/10.1190/geo2018-0404.1
7. L. Lévy, P. K. Maurya, S. Byrdina, J. Vandemeulebrouck, F. Sigmundsson, K. Árnason, T. Ricci, D. Deldicque, M. Roger, B. Gibert, others, Electrical resistivity tomography and time-domain induced polarization field investigations of geothermal areas at Krafla, Iceland: comparison to borehole and laboratory frequency-domain electrical observations. Geophys. J. Int. 218, 1469-1489 (2019) https://doi.org/10.1093/gji/ggz240
8. J. J. Daniels, Three-dimensional resistivity and induced-polarization modeling using buried electrodes. Geophysics. 42, 1006-1019 (1977) https://doi.org/10.1190/1.1440761
9. H. Shima, 2-D and 3-D resistivity image reconstruction using crosshole data. Geophysics. 57, 1270-1281 (1992) https://doi.org/10.1190/1.1443195
10. W. Daily, E. Owen, Cross-borehole resistivity tomography. Geophysics. 56, 1228-1235 (1991) https://doi.org/10.1190/1.1443142
11. C. A. Moreira, R. A. S. Paes, L. M. Ilha, J. da Cruz Bittencourt, Reassessment of Copper Mineral Occurrence Through Electrical Tomography and Pseudo 3D Modeling in Camaquã Sedimentary Basin, Southern Brazil. Pure Appl. Geophys. 176, 737-750 (2019) https://doi.org/10.1007/s00024-018-2019-2
12. Ali, Mosaad, Sun, Shulin, Qian, Wei, Bohari, Abdou Dodo, Claire, Dusabemariya, Zhang, Yan, Application of Resistivity Method for Mining Tailings Site Selection in Karst Regions. E3S Web Conf. 144, 1002 (2020) https://doi.org/10.1051/e3sconf/202014401002
13. W. Qian, B. Milkereit, G. McDowell, K. Stevens, S. Halladay, Borehole Resistivity Logging and Tomography for Mineral Exploration. Proc. Explor. 07 Fifth Decenn. Int. Conf. Miner. Explor., 1115-1118 (2007)
14. Y. Li, D. W. Oldenburg, 3-D inversion of induced polarization data. 65, 1931-1945 (2000) https://doi.org/10.1190/1.1444877
15. M. H. Loke, R. D. Barker, Least-squares deconvolution of apparent resistivity pseudosections. Geophysics. 60, 1682-1690 (1995) https://doi.org/10.1190/1.1443900
16. M. H. Loke, R. D. Barker, Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys. Prospect. 44, 131-152 (1996) https://doi.org/10.1111/j.1365-2478.1996.tb00142.x
17. V. N. Dakhnov, M. G. Latishova, V. A. Ryapolov, Investigation of wells by the induced polarization method (electrolytic well logging): Sb. Promisl. Geofiz. Vnetoneft, 46-82 (1952)
18. W. Qian, B. Milkereit, G. McDowell, K. Stevens, S. Halladay, Borehole resistivity logging and tomography for mineral exploration. Proc. Explor. 7, 1115-1118 (2007)
19. P. C. Lightfoot, B. Milkereit, others, in Proceedings of Exploration (2007), vol. 7, pp. 629-646
20. G. C. Begg, J. M. A. Hronsky, W. L. Griffin, S. Y. O'Reilly, in Processes and Ore Deposits of Ultramafic-Mafic Magmas through Space and Time (Elsevier, 2018), pp. 1-46
21. S. Yang, W. Qu, Y. Tian, J. Chen, G. Yang, A. Du, Origin of the inconsistent apparent Re-Os ages of the Jinchuan Ni-Cu sulfide ore deposit, China: Post-segregation diffusion of Os. Chem. Geol. 247, 401-418 (2008) https://doi.org/10.1016/j.chemgeo.2007.11.002
22. P. C. Lightfoot, C. E. G. Farrow, Geology, geochemistry, and mineralogy of the Worthington offset dike: A genetic model for offset dike mineralization in the Sudbury Igneous Complex. Econ. Geol. 97, 1419-1446 (2002) https://doi.org/10.2113/gsecongeo.97.7.1419
23. A. J. Naldrett, Magmatic sulfide deposits: Geology, geochemistry and exploration (Springer Science & Business Media, 2013)
24. D. H. Rousell, J. S. Fedorowich, B. O. Dressler, Sudbury Breccia (Canada): a product of the 1850 Ma Sudbury Event and host to footwall Cu--Ni--PGE deposits. Earth-Science Rev. 60, 147-174 (2003) https://doi.org/10.1016/S0012-8252(02)00091-0
25. J. E. Hawley, The Sudbury ores, their mineralogy and origin; Part 1, The geological setting. Can. Mineral. 7, 1-29 (1962)
26. R. B. Hearst, W. A. Morris, Regional gravity setting of the Sudbury Structure. Geophysics. 66, 1680-1690 (2001) https://doi.org/10.1190/1.1487110
27. R. A. F. Grieve, D. Stoeffler, A. Deutsch, The Sudbury structure: Controversial or misunderstood? J. Geophys. Res. Planets. 96, 22753-22764 (1991) https://doi.org/10.1029/91JE02513
28. D. E. Ames, A. Davidson, N. Wodicka, Geology of the giant Sudbury polymetallic mining camp, Ontario, Canada. Econ. Geol. 103, 1057-1077 (2008) https://doi.org/10.2113/gsecongeo.103.5.1057
29. D. Stöffler, M. Avermann, L. Bischoff, P. Brockmeyer, A. Deutsch, B. O. Dressler, R. Lakomy, V. Müller-Mohr, Sudbury, Canada: remnant of the only multi-ring (?) impact basin on Earth. Meteoritics. 24, 328 (1989)
30. A. Deutsch, R. A. F. Grieve, M. Avermann, L. Bischoff, P. Brockmeyer, D. Buhl, R. Lakomy, V. Müller-Mohr, M. Ostermann, D. Stöffler, The Sudbury structure (Ontario, Canada): A tectonically deformed multi-ring impact basin. Geol. Rundschau. 84, 697-709 (1995) https://doi.org/10.1007/s005310050034
31. T. E. Krogh, D. W. Davis, F. Corfu, E. G. Pye, in The geology and ore deposits of the Sudbury structure (Ontario Geological Survey Toronto, Ont., Canada, 1984), 1, 431-446, (1984)
32. P. C. Lightfoot, I. A. Zotov, others, Geology and geochemistry of the Sudbury Igneous Complex, Ontario, Canada: Origin of nickel sulfide mineralization associated with an impact-generated melt sheet. Geol. Ore Depos. C/C Geol. Rudn. Mestorozhdenii. 47, 349 (2005)
33. A. J. Naldrett, R. H. Hewins, E. G. Pye, P. E. Giblin, others, The main mass of the Sudbury Igneous Complex. Geol. Ore Depos. Sudbury Basin. Spec. 1, 235-252 (1984)
34. P. C. Lightfoot, R. R. Keays, G. G. Morrison, A. Bite, K. P. Farrell, Geologic and geochemical relationships between the contact sublayer, inclusions, and the main mass of the Sudbury Igneous Complex; a case study of the Whistle Mine Embayment. Econ. Geol. 92, 647-673 (1997) https://doi.org/10.2113/gsecongeo.92.6.647
35. R. R. Keays, P. C. Lightfoot, Formation of Ni--Cu--platinum group element sulfide mineralization in the Sudbury impact melt sheet. Mineral. Petrol. 82, 217-258 (2004) https://doi.org/10.1007/s00710-004-0050-8
36. P. C. Lightfoot, Nickel sulfide ores and impact melts: Origin of the Sudbury Igneous Complex (Elsevier, 2016)
37. W. A. Morris, Paleomagnetism of some sulphide occurrences from the south range of the Sudbury Basin: J. Can. Soc. Expl. Geophys. 17, 55-71 (1981)
38. G. G. Morrison, others, Morphological features of the Sudbury structure in relation to an impact origin. Geol. ore Depos. Sudbury Struct. Ed. by EG Pye, AJ Naldrett, PE Giblin. Ontario Geol. Surv. Spec. 1, 513-520 (1984)
39. G. G. Morrison, B. C. Jago, T. L. White, others, Footwall mineralization of the Sudbury Igneous Complex. Ontario Geol. Surv. 5, 119-132 (1994)
40. D. J. Marshall, T. R. Madden, Induced polarization, a study of its causes. Geophysics. 24, 790-816 (1959) https://doi.org/10.1190/1.1438659
41. J. S. Sumner, Principles of induced polarization for geophysical exploration (Elsevier, 2012), 5
42. J. H. Schön, Physical properties of rocks: Fundamentals and principles of petrophysics (Elsevier, 2015), 65 https://doi.org/10.1016/B978-0-08-100404-3.00006-8
43. S. H. Ward, B. K. Sternberg, D. J. LaBrecque, M. M. Poulton, Recommendations for IP research. Lead. Edge. 14, 243-247 (1995) https://doi.org/10.1190/1.1437120
44. I. M. Johnson, Spectral induced polarization parameters as determined through time-domain measurements. Geophysics. 49, 1993-2003 (1984) https://doi.org/10.1190/1.1441610
45. D. Santoso, A. Laesanpura, B. Sulistijo, S. Bahri, I. Suyanto, others, Application of Time Domain Induced Polarization (TDIP) Methods to Metallic Minerals Prospect on Kasihan Region, Pacitan Regency, East Java, Indonesia. Int. J. Econ. Environ. Geol., 16-23 (2019)
46. H. O. Seigel, Mathematical formulation and type curves for induced polarization. Geophysics. 24, 547-565 (1959) https://doi.org/10.1190/1.1438625
47. W. M. Telford, W. M. Telford, L. P. Geldart, R. E. Sheriff, R. E. Sheriff, Applied geophysics (Cambridge university press, 1990), 1 https://doi.org/10.1017/CBO9781139167932
48. J. Palich, W. Qian, C. Creek, I. Consulting, EarthProbe : Meeting the Challenges of Gold Exploration through High Resolution Borehole and Surface IP. Geophys. Explor. Geophys. Expand. Abstr. (2010)
49. J. J. Daniels, A. V Dyck, Borehole resistivity and electromagnetic methods applied to mineral exploration. IEEE Trans. Geosci. Remote Sens., 80-87 (1984) https://doi.org/10.1109/TGRS.1984.350582
50. B. Zhou, S. A. Greenhalgh, Cross-hole resistivity tomography using different electrode configurations. Geophys. Prospect. 48, 887-912 (2000) https://doi.org/10.1046/j.1365-2478.2000.00220.x