Semenenko Ye.V., Ruban V.D., Podoliak K.K. Substantiation of parameters for bimodal granulometric composition of structured suspension solid phase

Geoteh. meh. 2017, 134, 76-87

https://doi.org/10.15407/geotm2017.134.076

Semenenko Ye.V., Dr. Sc. (Tech.), Senior Researcher,

Ruban V.D., M.S (Tech.)

Podoliak K.K., M.S (Tech.)

(IGTM NASU)

SUBSTANTIATION OF PARAMETERS FOR BIMODAL GRANULOMETRIC COMPOSITION OF STRUCTURED SUSPENSION SOLID PHASE

 

UDC 532.584:532.772:539.215.2

Language: Russian

Abstract.

Principal possibility of obtaining the highest concentration of structured suspension through formation of two predominant particle sizes in the granulometric composition was proved. It is shown that at concentrations typical for the structured suspensions, it is possible to place smaller particles in the space between larger ones, thereby ensuring high concentration and sedimentation stability. It is determined that parameter, which characterizes bimodality of the granulometric composition of the solid phase, is determined by difference between porosity of the particle layer with the maximum advantageous size and porosity of the entire solid phase of the suspension. Dependence of the parameter, which characterizes bimodality of the granulometric composition of the solid phase, on the concentration of particles with the maximum predominant size at different concentrations of the suspension is described. Methods were developed for determining the required volume fractions of each mode of particles depending on the concentration of the suspension and their geometric dimensions.

Keywords: bimodal granulometric composition, structured suspension, solid phase, highest concentration.

REFERENCES

1. Biletskyi, V.S., Krut, O.A. and Svitlyi, Yu.G. (2007) «Prospects for introducing the technology of water-coal fuel in the small thermal power engineering of Ukraine», Materialy mizhnarodnoi konferentsii, [Materials of international conferences], Forum hirnykiv-2007 [Forum of miners- 2007], Dnipropetrovsk, Ukraine, october 2007, pp. 170-178.

2. Benedek K.R., Menzies, K.T. Jonson, S.A. and Wilson, R.P. (1995), Coal-Fueled Diesels for Modular Power Generation-Operating Experience with 1,7 % Ash Coal-Water Slurry, Proc. the 20-th Internat. Technic. Conf. on Coal Utilization & Fuel Systems, 1995, March, Clearwater, Florida, USA, pp. 721 – 723.

3. Bradish T.J. (1995), Utility Applications for Coal-Water Slurry Cofiring, Proc. the 20-th Internat. Technic. Conf. on Coal Utilization & Fuel Systems, 1995, March, Clearwater, Florida, USA, pp. 523 –534.

4. Nadutyj, V.P. and Lapshin E.S. (2005), Veroyatnostnyie protsessyi vibratsionnoy klassifikatsii mineralnogo syirya, [Probabilistic processes of oscillation classification of mineralraw material], Naukova dumka, Kiev, Ukraine.

5. Bedenko, V., Chistyakov, B. and Minkov, V. (1987), «Change of rheological properties depending on additives of surface active substances of various nature», Metody regulirovaniya strukturno-reologicheskikh svoystv i korrozionnoy aktivnosti vysokokontsentrirovannykh dispersnykh system Sb. nauchnyh trudov NPO Gidrotruboprovod,, Moscow, SU, pp. 15–22.

6. Luchnykov, V. (1988), «The state of the Ukrainian energy sector, opportunities for investors to rehabilitate thermal power plants. Business Opportunities and Investment Needs», Vozmozhnosty modernyzatsii ukrainskikh ugolnyukh ehlektrostantsyi:ukrainsko-averikanskaya konferentsiya, Kiev, Ukraine.

7. Bragin, B.F. (1993), Truboprovodnyj gidrotransport tvyerdyh materialov [Pipeline hydrotransport of solid materials], ISI VUGU, Kiev, Ukraine.

8. Krut, O.A. (2009), Vodovugilne palyvo [Water-coal fuel], Naukova dumka, Kiev, Ukraine.

9. Svitlyi, Yu.G. and Biletskyi, V.S. (2009), Hidravlichnyi transport [Hydraulic transport], Skhidny vydavnychy dim, Donetsk, Ukraine.

10. Smoldyrev, A.E. and Safonov, Yu.K. (2009), Truboprovodnyj transport koncentrirovannyh gidrosmesej [Pipeline transportation of concentrated slurries], Mashinostroenie, Moscow, USSR.

11. Svitlyi, Ju.G and Krut, O.A. (2010), Hidravlichnyi transport tvyerdykh materialiv [Hydraulic transport of solid materials], Skhidny vydavnychy dim, Donetsk, Ukraine.

12. Bovenko, V.N. and Horobets, L.Zh. (1987), «Application of the self-oscillating theory of fracture to predict the energy intensity of the process of grinding solid bodies», Doklady Akademii nauk SSSR, vol. 292, no. 5, pp.106-111.

13. Bovenko, V.N., Horobets, L.Zh. (1987), «On the manifestation of the discreteness of solids in the process of their grinding», Doklady Akademii nauk SSSR, vol. 292, no. 5, pp.1095-1100.

14. Gumenik, I.L., Sokil, A.M, Semenenko, E.V. and Shurygin, V.D. (2001), Problemy razrabotki rossypnykh mestorozhdeniy [Problems of development of placer deposits], Sіch, Dnepropetrovsk, Ukraine.

About the authors

Semenenko Yevhen Volodymyrovych, Doctor of Technical Sciences (D.Sc.), Senior Researcher, Head of the Department of Problems of Mine Energy Complexes, Institute of Geotechnical Mechanics named by N. Poljakov of National Academy of Sciences of Ukraine (IGTM, NAS of Ukraine), Dnipro, Ukraine

Ruban Vitalii Dmytrovych, Master of Sciences (M.Sc.), Junior researcher in Department of Mine Energy Complexes, Institute of Geotechnical Mechanics named by N. Poljakov of National Academy of Sciences of Ukraine (IGTM, NAS of Ukraine), Dnipro, Ukraine, This email address is being protected from spambots. You need JavaScript enabled to view it.

Podoliak Kostiantyn Kostiantynovych, Master of Sciences (M.Sc.) Engineer at the Department of Mine Energy Complexes, Institute of Geotechnical Mechanics named by N. Poljakov of National Academy of Sciences of Ukraine (IGTM, NAS of Ukraine), Dnipro, Ukraine, This email address is being protected from spambots. You need JavaScript enabled to view it.