Yevhen Semenenko, Tetіana Demchenko, Artyom Pavlichenko. Calculation of the maximum velocity of gravity flow in the pond-clarifier with higher aquatic plants

Geoteh. meh. 2020, 155, 88-95

https://doi.org/10.1051/e3sconf/202016800061

 

CALCULATION OF THE MAXIMUM VELOCITY OF GRAVITY FLOW IN THE POND-CLARIFIER WITH HIGHER AQUATIC PLANTS

1Yevhen Semenenko, 1Tetіana Demchenko, 2Artyom Pavlichenko

1Institute of Geotechnical Mechanics named by N. Poljakov of National Academy of Sciences of Ukraine, 2National Technical University "Dnipro Polytechnic"

 Language: English

Abstract. The analysis of the possible maximum fluid flow rates when using higher aquatic plants for clarification of recycled water in the pond-clarifier of the tailing pond has carried out. The study has been performed on the basis of a mathematical model of a plane slow stationary gravity flow of a viscous fluid in two parallel layers. The results of the study made it possible to determine the fluid velocity through a layer of higher aquatic plants floating on a free surface. The maximum possible velocity depending on the layer porosity has been determined. This value is necessary to determine the rational parameters of the process of clarifying technical recycled water from particles of the given hydraulic size, taking into account the pond-clarifier geometric dimensions.  It is shown that the velocity in the layer with higher aquatic plants has been determined by the ratio of two parameters of this layer - porosity and dimensionless resistance coefficient. It has been shown that the maximum velocity value coefficient in the layer with plants floating on free surface depends only on porosity of this layer and does not depend on its resistance coefficient.

REFERENCES

1. Medvedeva, O.A. (2012). Problems of the further operation of Kryvbas enrichment waste storage facilities and theoretical prerequisites for their solution. Geotekhnichna Mekhanika [Geo-Technical Mechanics], 97, 155 – 161

2. Blyuss, B.A., Sokil, A.M., Goman. O.G. (1999). Problemyi gravitatsionnogo obogascheniya titan-tsirkonovyih peskov. Dnepropetrovsk: Poligrafist

3. Gumenik, I.L., Sokil, A.M., Semenenko, E.V., Shuryigin, V.D. (2001). Problemyi razrabotki rossyipnyih mestorozhdeniy. Dnepropetrovsk: Sich

4. Lavnikevich, D. (2019). Strange rent, Delovaya stolitsa, 39(957), 8 – 9

5. Yaltanets, I.M. (2006). Gidromehanizirovannyie i podvodnyie gornyie rabotyi. Moskva: Mir gornoy knigi

6. Voloshin, A.I., Ponomarev, B.V. (2001). Mehanika pnevmotransportirovaniya syipuchih materialov. Kiev: Naukova Dumka

7. Semenenko, E.V. (2011). Nauchnyie osnovyi tehnologiy gidromehanizatsii otkryitoy razrabotki titan-tsirkonovyih rossyipey. Kyiv: Naukova Dumka

8. Flurik, E.A. (2014). Use of water hyacinth (Eichhornia lat. Eichhornia crassipes) for purification of wastewater and obtaining a feed additive. In: Belorussko-Kitayskogo molodezhnogo innovatsionnogo foruma "Novyie gorizontyi –2014", 101 – 102

9. Mongayt, I.L., Tekinidi, K.D., Nikoladze, G.I. (1078). Ochistka shahtnyih vod. Moskva: Nedra

10. Komissarov, S.V., Shaposhnikov, V.A. (1976). Mine water treatment with higher aquatic plants, Vodnyie resursy, 5, 199 – 161

11. Pavlichenko, A.V., Demchenko, T.D., Eliseev, V.I., Semenenko, E.V. (2019). Mathematical model of fluid flow with plants floating on a free surface. In: Aktualni problemi mehaniki sutsilnogo seredovischa i mitsnosti konstruktsiy, 264 – 264

12. Demchenko, T.D., Semenenko, E.V. (2019). Theoretical modeling of non-pressure fluid flows with plants floating on a free surface, Visnik Dnipropetrovskogo universitetu. Seriya Mehanika, 23(27), 5, 91 – 99

13. Loytsyanskiy, L.G. (1978). Mehanika zhidkosti i gaza. Moskva: Nauka

14. Poturaev, V.N., Voloshin, A.I., Ponomarev, B.V. (1989). Vibratsionno-pnevmaticheskoe transportirovanie syipuchih materialov. Kyiv: Naukova Dumka.