Pavlo Saik, Roman Dychkovskyi, Vasyl Lozynskyi, Volodymyr Falshtynskyi, Edgar Cabana, Leonid Hrytsenko. Studying the features of the implementation of underground coal gasification technology in terms of Lvivvuhillia SE
- Details
- Parent Category: Geo-Technical Mechanics, 2020
- Category: Geo-Technical Mechanics, 2020, № 155
Geoteh. meh. 2020, 155, 78-87
https://doi.org/10.1051/e3sconf/202016800036
STUDYING THE FEATURES OF THE IMPLEMENTATION OF UNDERGROUND COAL GASIFICATION TECHNOLOGY IN TERMS OF LVIVVUHILLIA SE
1Pavlo Saik, 1Roman Dychkovskyi, 1Vasyl Lozynskyi, 1Volodymyr Falshtynskyi, 2Edgar Cabana, 1Leonid Hrytsenko
1National Technical University "Dnipro Polytechnic", 2San Augustin National University of Arequipa
Language: English
Abstract. Topical issues of the possibilities for changes in the coal extraction technology in terms of Stepova mine of Lvivvuhillia SE have been highlighted. Analysis of the current state of mining operations has been carried out. Design solutions as for introduction of the coal gasification technology in the life cycle of the mining enterprise has been proposed on the basis of the analytical, experimental, and industrial studies; the technology has been described. Percentage ratio of the output of combustion generator gases (Н2, СО, СН4) has been identified; gas combustion value and efficiency of the process depending on certain changes in the blowing mixture composition supplied into the underground gas generator have been determined. Heat balance of the process of underground coal gasification has been studied making it possible to evaluate its energy balance. The algorithm to determine coal reserves in a mine pillar to be gasified has been proposed. Indices of the output of combustion generator gases from the gasification column have been defined. The relevant issues have been studied of ensuring the possibility of underground coal gasification technology when uncovering the mining extracted area for the underground gas generator operation.
REFERENCES
1. Piwniak, G.G., Bondarenko, V.I., Salli, V.I., Pavlenko, I.I., Dychkovskiy, R.O. (2007). Limits to economic viability of extraction of thin coal seams in Ukraine. Technical, Technological and Economic Aspects of Thin-Seams Coal Mining, 129-132. https://doi.org/10.1201/NOE0415436700.ch16
2. Bulat, A., Lukinov, V., Perepelitsa, V. (2011). Results of realized new concept of complex coal-gas deposit development. Technical and Geoinformational Systems in Mining: School of Underground Mining, 13-18. https://doi.org/10.1201/b11586-4
3. Churin, V., Vysotskaya, N., Sizova, Yu., Danilina, E., Gorelov, D. (2019). Distribution of mineral extraction revenue: overview of international practice. Mining of Mineral Deposits, 13(2), 66-74. https://doi.org/10.33271/mining13.02.066
4. Medunić, G., Mondol, D., Rađenović, A., Nazir, S. (2018). Review of the latest research on coal, environment, and clean technologies. Rudarsko Geolosko Naftni Zbornik, 33(3), 13-21. https://doi.org/10.17794/rgn.2018.3.2
5. Falshtynskyi, V., Saik, P., Lozynskyi, V., Dychkovskyi, R., Petlovanyi, M. (2018). Innovative aspects of underground coal gasification technology in mine conditions. Mining of Mineral Deposits, 12(2), 68-75. https://doi.org/10.15407/mining12.02.068
6. Falshtynskyi, V.S., Dychkovskyi, R.O., Saik, P.B., Lozynskyi, V.H., Cabana, E.C. (2017). Formation of thermal fields by the energy-chemical complex of coal gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 36-42
7. Bondarenko, V., Tabachenko, M., Wachowicz, J. (2010). Possibility of production complex of sufficient gasses in Ukraine. New Techniques and Technologies in Mining, 113-119. https://doi.org/10.1201/b11329-19
8. Burchart-Korol, D., Krawczyk, P., Czaplicka-Kolarz, K., Smoliński, A. (2016). Eco-efficiency of underground coal gasification (UCG) for electricity production. Fuel, (173), 239-246. https://doi.org/10.1016/j.fuel.2016.01.019
9. Śliwińska, A., Burchart-Korol, D., Smoliński, A. (2017). Environmental life cycle assessment of methanol and electricity co-production system based on coal gasification technology. Science of the Total Environment, (574), 1571-1579. https://doi.org/10.1016/j.scitotenv.2016.08.188
10. Kalybekov, T., Rysbekov, K.B., Toktarov, A.A., Otarbaev, O.M. (2019). Underground mine planning with regard to preparedness of mineral reserves. Mining Informational and Analytical Bulletin, (5), 34-43. https://doi.org/10.25018/0236-1493-2019-05-0-34-43
11. Demydov, M. (2020). Solutions multivariance about designing new levels of coal mines. Rudarsko Geolosko Naftni Zbornik, 35(2). Accepted pape https://doi.org/10.17794/rgn.2020.2.3
12. Ilyashov, M. Diedich, I., & Nazimko, V. (2019). Prospective tendencies of coal mining risk management. Mining of Mineral Deposits, 13(1), 111-117. https://doi.org/10.33271/mining13.01.111
13. Dychkovskyi, R.O. (2015). Forming the bilayer artificially created shell of georeactor in underground coal well gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 37-42
14. Tabachenko, M. (2016). Substantiating parameters of stratification cavities formation in the roof rocks during underground coal gasification. Rozrobka rodovyshch, 10(1), 16-24. https://doi.org/10.15407/mining10.01.016
15. Saik, P., Petlevanyi, M., Lozynskyi, V., Sai, K., Merzlikin, A. (2018). Innovative approach to the integrated use of energy resources of underground coal gasification. Solid State Phenomena, (277), 221-231. https://doi.org/10.4028/www.scientific.net/SSP.277.221
16. Pivniak, H.H., Pilov, P.I., Pashkevych, M.S., Shashenko, D.O. (2012). Synchro-mining: Civilized solution of problems of mining regions' sustainable operation. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 131-138
17. Pivnyak, G.G., Shashenko, O.M. (2015). Innovations and safety for coal mines in Ukraine. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 118-121.
18. Malanchuk, Z., Moshynskyi, V., Malanchuk, V., Korniienko, Y., Koziar, M. (2020). Results of Research into the Content of Rare Earth Materials in Man-Made Phosphogypsum Deposits. Key Engineering Materials, (844), 77-87. https://doi.org/10.4028/www.scientific.net/KEM.844.77
19. Vladyko, O., Kononenko, M., Khomenko, O. (2012). Imitating modeling stability of mine workings. Geomechanical Processes During Underground Mining, 147-150. https://doi.org/10.1201/b13157-26
20. Yun, Z., Jianfang, S., Zhongchun, L. (2019). Study of numerical simulation method modelling gas injection into fractured reservoirs. Mining of Mineral Deposits, 13(2), 41-45. https://doi.org/10.33271/mining13.02.041
21. Pivnyak, G., Dychkovskyi, R., Bobyliov, O., Cabana, E.C., Smoliński, A. (2018). Mathematical and Geomechanical Model in Physical and Chemical Processes of Underground Coal Gasification. Solid State Phenomena, (277), 1-16. https://doi.org/10.4028/www.scientific.net/SSP.277.1
22. Krasnyk, V. (2017). Modeling the process of mineral rocks cutting with a tool made of polycrystallinе superhard materials. Mining of Mineral Deposits, 11(3), 84-92. https://doi.org/10.15407/mining11.03.084
23. Pivnyak, G., Dychkovskyi, R., Smirnov, A., Cherednichenko, Y. (2013). Some aspects on the software simulation implementation in thin coal seams mining. Energy Efficiency Improvement of Geotechnical Systems, 1-10. https://doi.org/10.1201/b16355-2
24. Ali, M.A.M. (2018). Software application in mining engineering. Mining of Mineral Deposits, 12(1), 48-53. https://doi.org/10.15407/mining12.01.048
25. Sarycheva, L. (2003). Using GMDH in ecological and socio-economical monitoring problems. Systems Analysis Modelling Simulation, 43(10), 1409-1414. https://doi.org/10.1080/02329290290024925
26. Popovych, V., Voloshchyshyn, A. (2019). Features of temperature and humidity conditions of extinguishing waste heaps of coal mines in spring. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 4(436). 230-237. https://doi.org/10.32014/2019.2518-170X.118
27. Ramayah, M., Rasiah, R., Somasundram, S., Turner, J.J. (2019). Determinants of environmental degradation: reflections on the impact of identified economic variables on the environment. Mining of Mineral Deposits, 13(4), 42-52. https://doi.org/10.33271/mining13.04.042
28. Son, N.L.H., Anh, N.H., Dong, H.N. (2016). Review of Underground Coal Gasification Technologies. Proceedings - 3rd International Conference on Green Technology and Sustainable Development, 7796621, 69-73. https://doi.org/10.1109/GTSD.2016.26
29. Shafirovich, E., Varma, A. (2009). Underground coal gasification: A brief review of current status. Industrial and Engineering Chemistry Research, 48(17), 7865-7875. https://doi.org/10.1021/ie801569r
30. Basu, R. (2017). Evaluation of some renewable energy technologies. Mining of Mineral Deposits, 11(4), 29-37. https://doi.org/10.15407/mining11.04.029
31. Xin, L., Wang, Z., Huang, W., Kang, G., Lu, X., Zhang, P., Wang, J. (2014). Temperature field distribution of burnt surrounding rock in UCG stope. International Journal of Mining Science and Technology, 24(4), 573-580. https://doi.org/10.1016/j.ijmst.2014.06.001
32. Falshtynskyi, V., Dychkovskyi, R., Lozynskyi, V., Saik, P. (2015). Analytical, laboratory and bench test researches of underground coal gasification technology in National Mining University. New Developments in Mining Engineering, 97-106. https://doi.org/10.1201/b19901-19
33. Xin, L., Cheng, W., Xie, J., Liu, W., Xu, M. (2019). Theoretical research on heat transfer law during underground coal gasification channel extension process. International Journal of Heat and Mass Transfer, (142), 18409. https://doi.org/10.1016/j.ijheatmasstransfer.2019.07.059
34. Su, F., Itakura, K., Deguchi, G., Ohga, K., Goto, T. (2012). Laboratory studies on evaluation of gasification effect for conversion of coal resources in underground coal gasification (UCG) reactors. Advanced Materials Research, (600), 111-115. https://doi.org/10.4028/www.scientific.net/AMR.600.111
35. Dychkovskyi, R.O. (2015). Determination of the rock subsidence spacing in the well underground coal gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 30-36
36. Kostúr, K., Kačúr, J. (2008). The monitoring and control of underground coal gasification in laboratory conditions. Acta Montanistica Slovaca, 13(1), 111-117
37. Lozynskyi, V.G., Dychkovskyi, R.O., Falshtynskyi, V.S., Saik, P.B., Malanchuk, Ye.Z. (2016). Experimental study of the influence of crossing the disjunctive geological faults on thermal regime of underground gasifier. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5). 21-29
38. Kapusta, K., Stańczyk, K., Wiatowski, M., Chećko, J. (2013). Environmental aspects of a field-scale underground coal gasification trial in a shallow coal seam at the Experimental Mine Barbara in Poland Fuel, (113), 196-208. https://doi.org/10.1016/j.fuel.2013.05.015
39. Sarhosis, V., Kapusta, K., Lavis, S. (2018). Underground coal gasification (UCG) in Europe: Field trials, laboratory experiments, and EU-funded projects. Underground Coal Gasification and Combustion, 129-171. https://doi.org/10.1016/B978-0-08-100313-8.00005-0
40. Perkins, G. (2018). Underground coal gasification - Part I: Field demonstrations and process performance. Progress in Energy and Combustion Science, (67), 158-187. https://doi.org/10.1016/j.pecs.2018.02.004
41. Pivnyak, G., Bondarenko, V., Kovalevs'ka, I., Illiashov, M. (2012). Geomechanical Processes During Underground Mining, 238 p.https://doi.org/10.1201/b13157
42. Khomenko, O.Ye. (2012). Implementation of energy method in study of zonal disintegration of rocks. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 44-54
43. Malanchuk, Z.R., Moshynskyi, V.S., Korniienko, V.Y., Malanchuk, Y.Z., Lozynskyi, V.H. (2019). Substantiating parameters of zeolite-smectite puff-stone washout and migration within an extraction chamber. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 11-18. https://doi.org/10.29202/nvngu/2019-6/2
44. Wiatowski, M., Stańczyk, K., Świadrowski, J., (2012). Semi-technical underground coal gasification (UCG) using the shaft method in Experimental Mine "Barbara". Fuel, (99), 170-179. https://doi.org/10.1016/j.fuel.2012.04.017
45. Falshtyns'kyy, V., Dychkovs'kyy, R., Stanczyk, K., Swiadrowski, J. (2010). Analytical determination of parameters of material and thermal balance and physical parameters of a coal seam work-out on mine "Barbara", Poland. New Techniques and Technologies in Mining, 161-165. https://doi.org/10.1201/b11329-27
46. Voloshyn, O., Potapchuk, I., Zhevzhyk, O., Yemelianenko, V., Horiachkin, V., Zhovtonoha, M., Semenenko, Ye., Таtarko, L. (2018). Study of the plasma flow interaction with the borehole surface in the process of its thermal reaming. Mining of Mineral Deposits, 12(3), 28-35. https://doi.org/10.15407/mining12.03.028
47. Bulat, A., Voloshyn, O., Zhevzhik, O. (2013). Plasma reactor for thermochemical preparation of coal-air mixture before its burning in the furnaces. Annual Scientific-Technical Colletion - Mining of Mineral Deposits, 39-44. https://doi.org/10.1201/b16354-8
48. Golovchenko, A. (2020). Some aspects of the control for the radial distribution of burden material and gas flow in the blast furnace. Energies, 13(4), 923-926. https://doi.org/10.3390/en13040923
49. Falshtyns'kyy, V., Dychkovs'kyy, R., Lozyns'kyy, V., Saik, P. (2013). Justification of the gasification channel length in underground gas generator. Annual Scientific-Technical Colletion - Mining of Mineral Deposits, 125-132. https://doi.org/10.1201/b16354-22
50. Lozynskyi, V., Saik, P., Petlovanyi, M., Sai, K., Malanchuk, Z., Malanchuk, Y. (2018). Substantiation into mass and heat balance for underground coal gasification in faulting zones. Inzynieria Mineralna, 19(2), 289-300
51. Laciak, M., Kačur, J., Durdán, M. (2011). Material and energy balance of the UCG process in the laboratory conditions. Modern Management of Mine Producing, Geology and Environmental Protection, (3), 69-76. https://doi.org/10.5593/sgem2011/s18.111
52. Fischer, D D., Boysen, J.E., Gunn, R.D. (1977). Energy balance for the second underground coal gasification experiment, Hanna, Wyoming. Trans Soc Min Eng AIME, 262(4), 341-347
53. Sawyer, W.K., Shuck, L.Z. (1976). Numerical simulation of mass and energy transfer in the longwall process of underground gasification of coal. Symposium on Numerical Simulation of Reservoir Performance, 355-365. https://doi.org/10.2118/5743-MS
54. Lozynskyi, V., Dychkovskyi, R., Saik, P., Falshtynskyi, V. (2018). Coal Seam Gasification in Faulting Zones (Heat and Mass Balance Study). Solid State Phenomena, (277), 66-79. https://doi.org/10.4028/www.scientific.net/SSP.277.66
55. Gür, M., Canbaz, E.D. (2020). Analysis of syngas production and reaction zones in hydrogen oriented underground coal gasification. Fuel, (269), 117331. https://doi.org/10.1016/j.fuel.2020.117331
56. Yang, L.H., Zhang, X., Zhu, K. (2016). Hydrogen production in underground coal gasification (UCG). Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 38(3), с. 376-383. https://doi.org/10.1080/15567036.2013.770106
57. Liu, S.Q., Wang, Y.Y., Zhao, K., Yang, N. (2009). Enhanced-hydrogen gas production through underground gasification of lignite. Mining Science and Technology, 19(3), 389-394. https://doi.org/10.1016/S1674-5264(09)60073-9
58. Falshtynskyi, V., Dychkovskyi, R., Saik, P., Lozynskyi, V. (2014). Some aspects of technological processes control of an in-situ gasifier during coal seam gasification. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 109-112. https://doi.org/10.1201/b17547-20
59. Saik, P.B., Dychkovskyi, R.O., Lozynskyi, V.H., Malanchuk, Z.R., Malanchuk, Ye.Z. (2016). Revisiting the underground gasification of coal reserves from contiguous seams. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 60-66