Liliia Frolova, Mykola Shapa, Tetiana Butyrina, Мariia Savchenko, Tetiana Hrydnieva. Investigation of ultrasonic treatment of wastewater from iron compounds
- Details
- Parent Category: Geo-Technical Mechanics, 2020
- Category: Geo-Technical Mechanics, 2020, № 154
Geoteh. meh. 2020, 154, 45-50
https://doi.org/10.1051/e3sconf/202016800027
INVESTIGATION OF ULTRASONIC TREATMENT OF WASTEWATER FROM IRON COMPOUNDS
1Liliia Frolova,2Mykola Shapa, 1Tetiana Butyrina, 1Мariia Savchenko, 1Tetiana Hrydnieva
1Ukrainian State University of Chemical Technology, 2Regional Institute of Public Administration, National Academy of Public Administration, Office of the President of Ukraine
Language: English
Abstract. The high level of wastewater pollution in the mining and metallurgical industries by compounds of heavy metals, including iron, enhances their migration into the environment. Due to the lack of universal high-performance and inexpensive methods of wastewater treatment and purification, the development of new technologies is very relevant. The article discusses the possibility of wastewater treatment by ultrasonic coagulation of iron compounds in a suspended colloidal state. It has been shown that the frequency of ultrasound does not affect the coagulation rate. The concentration of iron compounds in wastewater is inversely proportional to the intensity of ultrasound. It was also found that the dependence of the residual content of iron compounds on the processing time is extreme, which is associated with the formation of agglomerates and their subsequent destruction. The results obtained served as the basis for the development of the technological scheme.
REFERENCES:
1. M. Vepsalainen, M. Sillanpaa, Advanced Water Treatment (Elsevier, 2020)
2. K. Rehman et al., J. Cell. Biochem., 119, 157-184 (2018). https://doi.org/10.1002/jcb.26234
3. V. Abramov et al., J. Machine Constr. Maint. Problemy Eksploatacji (2019)
4. P.C. Sangave, A.B. Pandit Ultrason. Sonochem., 11, 197-203 (2004). https://doi.org/10.1016/ j.ultsonch.2004.01.026
5. L. Frolova, A. Pivovarov, E. Tsepich, J. Chem. Technol. Metallurgy, 51, 163-167 (2016)
6. S.K. Khanal et al., Crit. Rev. Envir. Scien. Technol., 37, 277-313 (2007)
7. L.A. Frolova, A.A. Pivovarov, High Energy Chem., 49, 10-15 (2015). https://doi.org/10.1134/ S001814391501004X
8. L. Frolova, A. Pivovarov, E. Tsepich, Nanophys., Nanophot., Surf. Studies, Appl. (Springer, Cham, 2016)
9. Z. Wei, F.A. Villamena, L.K. Weavers, Envir. Scien. & Technol. 51, 3410-3417 (2017). https://doi.org/10.1021/acs.est.6b05392
10. S.G. Babu, M. Ashokkumar, B. Neppolian, Top. Curr. Chem. 374, 75 (2016). https://doi.org/10.1007/ s41061-016-0072-9
11. J.H. Gibson et al., Water research, 43, 2251-2259 (2009). https://doi.org/10.1016/j.watres.2009.02.024
12. Y. Li et al., J. Hazard. Mat., 244, 403-411 (2013). https://doi.org/10.1016/j.jhazmat.2012.11.022
13. R.H. Jawale, A. Tandale, P.R. Gogate, Ultrason. Sonochem., 38, 402-409, (2017). https://doi.org/10.1016/ j.ultsonch.2017.03.032
14. L. Borea et al., Ultrason., 83, 42-47, (2018). https://doi.org/10.1016/j.ultras.2017.06.013
15. L.A. Frolova, N.N. Shapa, Metallurg. Min. Ind., 3, 287 (2011)
16. P.B. Subhedar et al., Ultrason. Sonochem., 27, 530-535 (2015). https://doi.org/10.1016/ j.ultsonch.2015.04.001
17. V.V.Goncharuk, V.V. Malyarenko, V.A. Yaremenko, Khim. Tekhnol. Vody, 26, 275-286 (2004)
18. Yu. Yu. Lur’e, A.I. Rybnikova, Khimicheskij analiz proizvodstvennykh stochnykh vod (Moskva,: Khimiya, 1974)
19. V.B. Aleskovskij, Fiziko-khimicheskie metody analiza (Lenegrad: Khimiya, 1988)
20. Yu.G. Frolov, Laboratornye raboty i zadachi po kolloidnoj khimii (Moskva: Khimiya, 1986)
21. A.V. Mamchenko, I.I. Mekhiko i dr. Khim. Tekhnol. Vody, 28, 342-355 (2006)